论文标题

通过机器人群对流扩散场的间接最佳控制

Indirect Optimal Control of Advection-Diffusion Fields through Robotic Swarms

论文作者

Sinigaglia, Carlo, Manzoni, Andrea, Braghin, Francesco, Berman, Spring

论文摘要

在本文中,我们考虑了最佳指导大规模的水下车辆的问题,该车辆负责间接控制对流扩散环境领域。微观车辆动力学由带有漂移的随机微分方程控制。漂移术语模拟车辆的自行速度和电流的速度场。在平均场景中,宏观车辆的动力学由kolmogorov方程式以线性抛物线对流方程的形式控制。环境场受到对流扩散方程的约束,在该方程中,对流术语由流体速度场定义。这些车辆配备了机上执行器,使群体能够充当环境场中的分布式来源,并由确定局部源强度的标量控制参数调节。在这种情况下,我们制定了一个最佳控制问题,以计算车辆速度和执行器强度场,该电场将环境场驱动到指定时间内的所需分布。换句话说,我们设计了最佳矢量和标量驱动场,以通过群体产生的分布源间接控制环境场。在证明解决最佳控制问题解决方案的存在之后,我们使用有限元方法(FEM)离散并解决该问题。 FEM离散化自然提供了代表控件进入车辆群和环境场动力学的双线性方式的操作员。最后,我们通过数值模拟显示了控制策略在将环境场调节为零或在存在双gyre流场的情况下的所需分布中的有效性。

In this paper, we consider the problem of optimally guiding a large-scale swarm of underwater vehicles that is tasked with the indirect control of an advection-diffusion environmental field. The microscopic vehicle dynamics are governed by a stochastic differential equation with drift. The drift terms model the self-propelled velocity of the vehicle and the velocity field of the currents. In the mean-field setting, the macroscopic vehicle dynamics are governed by a Kolmogorov forward equation in the form of a linear parabolic advection-diffusion equation. The environmental field is governed by an advection-diffusion equation in which the advection term is defined by the fluid velocity field. The vehicles are equipped with on-board actuators that enable the swarm to act as a distributed source in the environmental field, modulated by a scalar control parameter that determines the local source intensity. In this setting, we formulate an optimal control problem to compute the vehicle velocity and actuator intensity fields that drive the environmental field to a desired distribution within a specified amount of time. In other words, we design optimal vector and scalar actuation fields to indirectly control the environmental field through a distributed source, produced by the swarm. After proving an existence result for the solution of the optimal control problem, we discretize and solve the problem using the Finite Element Method (FEM). The FEM discretization naturally provides an operator that represents the bilinear way in which the controls enter into the dynamics of the vehicle swarm and the environmental field. Finally, we show through numerical simulations the effectiveness of our control strategy in regulating the environmental field to zero or to a desired distribution in the presence of a double-gyre flow field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源