论文标题
Lindström对一类代数不可证实的矩阵的猜想
Lindström's conjecture on a class of algebraically non-representable matroids
论文作者
论文摘要
Gordon推出了一类Matroids $ M(N)$,用于Prime $ n \ ge 2 $,因此$ m(n)$是代数表示,但仅以特征性$ n $。 Lindström证明,如果$ n> 2 $是一个偶数号码,则一般$ n \ ge 2 $的$ m(n)$在代数上是不可代表的,他推测,如果$ n $是一个复合号码,则不能以代数为代数。我们介绍了一种称为{\ it Harmonic Matroids}的新型曲霉,其中完整的代数矩阵就是一个例子。在这种更一般的情况下,我们证明了猜想。
Gordon introduced a class of matroids $M(n)$, for prime $n\ge 2$, such that $M(n)$ is algebraically representable, but only in characteristic $n$. Lindström proved that $M(n)$ for general $n\ge 2$ is not algebraically representable if $n>2$ is an even number, and he conjectured that if $n$ is a composite number it is not algebraically representable. We introduce a new kind of matroid called {\it harmonic matroids}, of which full algebraic matroids are an example. We prove the conjecture in this more general case.