论文标题
在连接图中的对称成本
The cost of symmetry in connected graphs
论文作者
论文摘要
本文回答了A. A. Klyachko和N. M. Luneva在联合论文中提出的问题,内容涉及图中对称成本的估计值。最初的估计说,如果可以从连接的图中删除n个顶点,以便在其中留下的同构$γ$的连接子图,那么最多最多$ n | v(γ)| $顶点在图表的所有自动形态下形成一个不变性,以使该图不包含子量子量的亚量iNsomorphic to $γ$ $γ$。我们将证明存在图$γ$,该估计不是最佳的。
The paper answers the question posed in a joint paper by A. A. Klyachko and N. M. Luneva about the optimality of the estimate for the cost of symmetry in graphs. The original estimate says that if n vertices can be removed from a connected graph so that there is no connected subgraph of isomorphic $Γ$ left in it, then at most $n|V(Γ)|$ vertices that form a set invariant under all automorphisms of the graph so that the graph does not contain a subgraph isomorphic to $Γ$. We will prove that there exists a graph $Γ$ for which this estimate is not optimal.