论文标题
在特征的某些特征$ p> 0 $上,古典群体中的扭曲共轭
Twisted conjugacy in classical groups over certain domains of Characteristic $p>0$
论文作者
论文摘要
令$ f $为有限场$ \ mathbb {f} _p $,$ p \ ne 2 $的代数关闭的子场,然后让$ r $表示任何戒指,以至于$ f [t] \ subset r \ subset r \ subsetneq f(t)$。令$ g $是一个经典的雪佛兰类型,其定义在$ r $上。我们证明了组$ g(r)$具有$ r _ {\ infty} $ - 属性。
Let $F$ be a subfield of the algebraic closure of a finite field $\mathbb{F}_p$, $p \ne 2$, and let $R$ denote any ring such that $F[t] \subset R \subsetneq F(t)$. Let $G$ be a classical Chevalley group of adjoint type defined over $R$. We prove that the group $G(R)$ has the $R_{\infty}$-property.