论文标题
动态空间传播网络,以完成深度完成
Dynamic Spatial Propagation Network for Depth Completion
论文作者
论文摘要
图像引导的深度完成旨在生成稀疏深度测量和相应的RGB图像的密集深度图。当前,空间传播网络(SPN)是最受欢迎的基于亲和力完成的方法,但是它们仍然遭受固定亲和力的表示限制和迭代过程中过度平滑的限制。我们的解决方案是估计每种SPN迭代中的独立亲和力矩阵,但它是过度参数化且重量计算的。本文介绍了一个有效的模型,该模型以基于注意力的动态方法来了解相邻像素之间的亲和力。具体而言,我们提出的动态空间传播网络(DYSPN)利用非线性传播模型(NLPM)。它将邻居分为不同的距离,并递归产生独立的注意图,以将这些部分改进到适应性亲和力矩阵中。此外,我们采用扩散抑制(DS)操作,以便该模型在早期阶段收敛,以防止对密度深度过度平滑。最后,为了降低所需的计算成本,我们还引入了三种变体,以减少所需的邻居和注意力,同时仍保持相似的精度。在实践中,我们的方法需要更少的迭代来匹配其他SPN的性能,并且总体上会产生更好的结果。 DYSPN的表现优于提交时的其他最新方法(SOTA)方法(DC)评估(DC)评估,并且还能够在NYU DEPTH V2数据集中产生SOTA性能。
Image-guided depth completion aims to generate dense depth maps with sparse depth measurements and corresponding RGB images. Currently, spatial propagation networks (SPNs) are the most popular affinity-based methods in depth completion, but they still suffer from the representation limitation of the fixed affinity and the over smoothing during iterations. Our solution is to estimate independent affinity matrices in each SPN iteration, but it is over-parameterized and heavy calculation. This paper introduces an efficient model that learns the affinity among neighboring pixels with an attention-based, dynamic approach. Specifically, the Dynamic Spatial Propagation Network (DySPN) we proposed makes use of a non-linear propagation model (NLPM). It decouples the neighborhood into parts regarding to different distances and recursively generates independent attention maps to refine these parts into adaptive affinity matrices. Furthermore, we adopt a diffusion suppression (DS) operation so that the model converges at an early stage to prevent over-smoothing of dense depth. Finally, in order to decrease the computational cost required, we also introduce three variations that reduce the amount of neighbors and attentions needed while still retaining similar accuracy. In practice, our method requires less iteration to match the performance of other SPNs and yields better results overall. DySPN outperforms other state-of-the-art (SoTA) methods on KITTI Depth Completion (DC) evaluation by the time of submission and is able to yield SoTA performance in NYU Depth v2 dataset as well.