论文标题

简化了CAD功能的学习,利用了深层剩余的自动编码器

Simplified Learning of CAD Features Leveraging a Deep Residual Autoencoder

论文作者

Schönhof, Raoul, Elstner, Jannes, Manea, Radu, Tauber, Steffen, Awad, Ramez, Huber, Marco F.

论文摘要

在计算机视觉的领域中,诸如EfficityNet之类的深度残留神经网络在稳健性和准确性方面设定了新的标准。深度神经网络培训的基础的一个关键问题是缺乏足够数量的培训数据。问题会恶化,尤其是如果不能自动生成标签,而必须手动注释。例如,如果应根据示例模型将与3D零件相关的专家知识进行外部化,则会发生此挑战。减少必要标记数据数量的一种方法可能是使用自动编码器,可以在没有标记数据的情况下以无监督的方式学习。在这项工作中,我们基于有效网络体系结构提供了一个深层的3D自动编码器,该自动编码器旨在转移与3D CAD模型评估有关的转移学习任务。为此,我们将有效网络采用到3D问题,例如从步骤文件中得出的体素模型。努力减少所需标记的3D数据的量,可以将网络编码用于转移训练。

In the domain of computer vision, deep residual neural networks like EfficientNet have set new standards in terms of robustness and accuracy. One key problem underlying the training of deep neural networks is the immanent lack of a sufficient amount of training data. The problem worsens especially if labels cannot be generated automatically, but have to be annotated manually. This challenge occurs for instance if expert knowledge related to 3D parts should be externalized based on example models. One way to reduce the necessary amount of labeled data may be the use of autoencoders, which can be learned in an unsupervised fashion without labeled data. In this work, we present a deep residual 3D autoencoder based on the EfficientNet architecture, intended for transfer learning tasks related to 3D CAD model assessment. For this purpose, we adopted EfficientNet to 3D problems like voxel models derived from a STEP file. Striving to reduce the amount of labeled 3D data required, the networks encoder can be utilized for transfer training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源