论文标题

poisson-birnbaum-saunders回归模型用于聚类计数数据

Poisson-Birnbaum-Saunders Regression Model for Clustered Count Data

论文作者

Gonçalves, Jussiane Nader, Barreto-Souza, Wagner, Ombao, Hernando

论文摘要

同一集群/组中受试者之间独立的前提通常在实践中失败,并且依靠这种站不住脚的假设的模型会产生误导性结果。为了克服这种严重的缺陷,我们引入了一个新的回归模型,以处理过度分散和相关的聚类计数。为了说明集群中的相关性,我们提出了一个泊松回归模型,在该模型中,同一群集内的观测值是由birnbaum-saunders分布的相同潜在随机效应驱动的,该参数控制了个体之间依赖性的强度。这种新型的多元计数模型称为聚类泊松伯恩鲍姆 - 索德斯(CPBS)回归。如本文所示,CPBS模型在分析上是可拖延的,并且可以明确获得其力矩结构。参数的估计是通过最大似然法执行的,并且还开发了期望最大化(EM)算法。提出了评估我们提出的估计量的有限样本性能的仿真结果。我们还讨论了用于检查模型充足性的诊断工具。关于美国卫生研究和质量机构进行的医疗支出小组调查(MEP),关于个人到医院急诊室住院及医院急诊室的住院次数的经验应用,说明了我们提出的方法的有用性。

The premise of independence among subjects in the same cluster/group often fails in practice, and models that rely on such untenable assumption can produce misleading results. To overcome this severe deficiency, we introduce a new regression model to handle overdispersed and correlated clustered counts. To account for correlation within clusters, we propose a Poisson regression model where the observations within the same cluster are driven by the same latent random effect that follows the Birnbaum-Saunders distribution with a parameter that controls the strength of dependence among the individuals. This novel multivariate count model is called Clustered Poisson Birnbaum-Saunders (CPBS) regression. As illustrated in this paper, the CPBS model is analytically tractable, and its moment structure can be explicitly obtained. Estimation of parameters is performed through the maximum likelihood method, and an Expectation-Maximization (EM) algorithm is also developed. Simulation results to evaluate the finite-sample performance of our proposed estimators are presented. We also discuss diagnostic tools for checking model adequacy. An empirical application concerning the number of inpatient admissions by individuals to hospital emergency rooms, from the Medical Expenditure Panel Survey (MEPS) conducted by the United States Agency for Health Research and Quality, illustrates the usefulness of our proposed methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源