论文标题

使用混合olconvnet的组织病理学图像中的细胞核分类

Cell nuclei classification in histopathological images using hybrid OLConvNet

论文作者

Tripathi, Suvidha, Singh, Satish Kumar

论文摘要

用于癌症检测的计算机辅助组织病理学图像分析是医疗领域的主要研究挑战。由于细胞核的异质性和数据集变异性,自动检测和分类用于癌症诊断的细胞核在发展最先进的算法中构成了许多挑战。最近,多种分类算法为其数据集使用了复杂的深度学习模型。但是,这些方法中的大多数都是刚性的,它们的建筑布置遭受了僵化性和无解剖性。在这篇研究文章中,我们提出了一种混合和灵活的深度学习体系结构OLCONVNET,该体系结构通过使用较浅的卷积神经网络(CNN)来整合传统对象级特征和深度学习特征的概括,称为$ CNN_ {3L} $。 $ cnn_ {3l} $通过较少的参数减少训练时间,从而消除更深层算法施加的空间约束。我们在曲线(AUC)性能参数下使用F1得分和多类区域来比较结果。为了进一步增强建筑方法的生存能力,我们用艺术状态深度学习架构Alexnet,VGG16,VGG19,Resnet50,InceptionV3和Densenet121作为骨干网络测试了我们提出的方法。在对所有四个体系结构的分类结果进行了全面分析之后,我们观察到我们所提出的模型效果很好,并且比当代复杂算法更好。

Computer-aided histopathological image analysis for cancer detection is a major research challenge in the medical domain. Automatic detection and classification of nuclei for cancer diagnosis impose a lot of challenges in developing state of the art algorithms due to the heterogeneity of cell nuclei and data set variability. Recently, a multitude of classification algorithms has used complex deep learning models for their dataset. However, most of these methods are rigid and their architectural arrangement suffers from inflexibility and non-interpretability. In this research article, we have proposed a hybrid and flexible deep learning architecture OLConvNet that integrates the interpretability of traditional object-level features and generalization of deep learning features by using a shallower Convolutional Neural Network (CNN) named as $CNN_{3L}$. $CNN_{3L}$ reduces the training time by training fewer parameters and hence eliminating space constraints imposed by deeper algorithms. We used F1-score and multiclass Area Under the Curve (AUC) performance parameters to compare the results. To further strengthen the viability of our architectural approach, we tested our proposed methodology with state of the art deep learning architectures AlexNet, VGG16, VGG19, ResNet50, InceptionV3, and DenseNet121 as backbone networks. After a comprehensive analysis of classification results from all four architectures, we observed that our proposed model works well and perform better than contemporary complex algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源