论文标题
Neumann边界条件的抛物线方程的定量独特延续
Quantitative unique continuation for parabolic equations with Neumann boundary conditions
论文作者
论文摘要
在本文中,我们在一个时间点建立了一个全球定量估计,用于在有界域中具有诺伊曼边界条件的抛物线方程解决方案的解决方案。我们的证明主要基于Carleman换向器的估计和全球频率函数参数,这是从最近的工作中动机[5]。作为应用程序,我们从上述方程的所有解决方案的可测量集中获得可观察性不平等。
In this paper, we establish a globally quantitative estimate of unique continuation at one time point for solutions of parabolic equations with Neumann boundary conditions in bounded domains. Our proof is mainly based on Carleman commutator estimates and a global frequency function argument, which is motivated from a recent work [5]. As an application, we obtain an observability inequality from measurable sets in time for all solutions of the above equations.