论文标题

强烈的逆向量子侧信息的隐私放大

Strong Converse for Privacy Amplification against Quantum Side Information

论文作者

Shen, Yu-Chen, Gao, Li, Cheng, Hao-Chung

论文摘要

我们使用跟踪距离作为安全标准,建立了一个对量子侧信息的隐私放大的一杆强匡威绑定。这种强的匡威结合意味着,在独立和相同的情况下,当提取的随机性速率超过量子条件熵时,痕量距离指数呈指数收敛到每个有限的区块长度。已建立的单发装订有一个应用程序,可以在量子通道上限制经典Quantum窃听通道编码和私人通信的信息泄漏。也就是说,随着哈希使用的随机性速率超过量子互信息,爱丽丝和窃听的联合状态之间的痕量距离及其脱钩状态消失。另一方面,当速率低于量子相互信息时,痕量距离会收敛到一个,从而导致指数强的匡威。我们的结果还导致了熵积累的指数强逆,这补充了Dupuis [arxiv:2105.05342]的最新结果。最后,我们的结果及其应用适用于中等偏差制度。也就是说,当相关速率接近痕量距离的渐近行为时,我们的速度阈值慢于$ O(1/\ sqrt {n})$。

We establish a one-shot strong converse bound for privacy amplification against quantum side information using trace distance as a security criterion. This strong converse bound implies that in the independent and identical scenario, the trace distance exponentially converges to one in every finite blocklength when the rate of the extracted randomness exceeds the quantum conditional entropy. The established one-shot bound has an application to bounding the information leakage of classical-quantum wiretap channel coding and private communication over quantum channels. That is, the trace distance between Alice and Eavesdropper's joint state and its decoupled state vanishes as the rate of randomness used in hashing exceeds the quantum mutual information. On the other hand, the trace distance converges to one when the rate is below the quantum mutual information, resulting in an exponential strong converse. Our result also leads to an exponential strong converse for entropy accumulation, which complements a recent result by Dupuis [arXiv:2105.05342]. Lastly, our result and its applications apply to the moderate deviation regime. Namely, we characterize the asymptotic behaviors of the trace distances when the associated rates approach the fundamental thresholds with speeds slower than $O(1/\sqrt{n})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源