论文标题
关于组合全有或全无的变换的信息理论安全
On the Information-theoretic Security of Combinatorial All-or-nothing Transforms
论文作者
论文摘要
Rivest作为消息预处理技术提出了全部或全部的变换(AONT),用于加密数据以防止蛮力攻击,并在加密和信息安全方面有许多应用。后来,Stinson引入了无条件安全的AONT及其组合表征。非正式地,组合AONT是一个具有无偏见的数组,其安全属性通常取决于输入$ s $ TUPLES上的先前概率分布。最近,Esfahani和Stinson向组合AONT表明,只要所有输入$ s $ TUPLASE都具有均衡状态,并且只要所有输入$ s $ tuples均具有非零概率,并且具有较弱的安全性。 本文旨在探讨组合$(t,s,v)$ - aonts的完美安全性与弱安全性之间的差距。具体而言,我们考虑了所有$ s $输入的典型情况,即所有$ h(但不一定是相同)的值,并量化了$ h(\ nathcal {x} | \ Mathcal {y})$ oi $ t $ inputs $ \ mathcal {x} $ by $ s-t $ s $ s t $ s t y的$ h Mathcal {y})$ overy $ t $ inputs $ tupts $ \ mathcal {x} $。特别是,我们在$ h(\ Mathcal {x} | \ Mathcal {y})$上建立了一般的下限和上限,用于使用信息理论技术组合,并表明在某些情况下可以达到派生的界限。此外,讨论是为组合不对称AONTS的安全性范围扩展的。
All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have numerous applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs $s$-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs $s$-tuples are equiprobable, and has weak security provided that all the inputs $s$-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial $(t,s,v)$-AONTs. Concretely, we consider the typical scenario that all the $s$ inputs take values independently (but not necessarily identically) and quantify the amount of information $H(\mathcal{X}|\mathcal{Y})$ about any $t$ inputs $\mathcal{X}$ that is not revealed by any $s-t$ outputs $\mathcal{Y}$. In particular, we establish the general lower and upper bounds on $H(\mathcal{X}|\mathcal{Y})$ for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases. Furthermore, the discussions are extended for the security properties of combinatorial asymmetric AONTs.