论文标题

关于组合全有或全无的变换的信息理论安全

On the Information-theoretic Security of Combinatorial All-or-nothing Transforms

论文作者

Gu, Yujie, Akao, Sonata, Esfahani, Navid Nasr, Miao, Ying, Sakurai, Kouichi

论文摘要

Rivest作为消息预处理技术提出了全部或全部的变换(AONT),用于加密数据以防止蛮力攻击,并在加密和信息安全方面有许多应用。后来,Stinson引入了无条件安全的AONT及其组合表征。非正式地,组合AONT是一个具有无偏见的数组,其安全属性通常取决于输入$ s $ TUPLES上的先前概率分布。最近,Esfahani和Stinson向组合AONT表明,只要所有输入$ s $ TUPLASE都具有均衡状态,并且只要所有输入$ s $ tuples均具有非零概率,并且具有较弱的安全性。 本文旨在探讨组合$(t,s,v)$ - aonts的完美安全性与弱安全性之间的差距。具体而言,我们考虑了所有$ s $输入的典型情况,即所有$ h(但不一定是相同)的值,并量化了$ h(\ nathcal {x} | \ Mathcal {y})$ oi $ t $ inputs $ \ mathcal {x} $ by $ s-t $ s $ s t $ s t y的$ h Mathcal {y})$ overy $ t $ inputs $ tupts $ \ mathcal {x} $。特别是,我们在$ h(\ Mathcal {x} | \ Mathcal {y})$上建立了一般的下限和上限,用于使用信息理论技术组合,并表明在某些情况下可以达到派生的界限。此外,讨论是为组合不对称AONTS的安全性范围扩展的。

All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have numerous applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs $s$-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs $s$-tuples are equiprobable, and has weak security provided that all the inputs $s$-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial $(t,s,v)$-AONTs. Concretely, we consider the typical scenario that all the $s$ inputs take values independently (but not necessarily identically) and quantify the amount of information $H(\mathcal{X}|\mathcal{Y})$ about any $t$ inputs $\mathcal{X}$ that is not revealed by any $s-t$ outputs $\mathcal{Y}$. In particular, we establish the general lower and upper bounds on $H(\mathcal{X}|\mathcal{Y})$ for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases. Furthermore, the discussions are extended for the security properties of combinatorial asymmetric AONTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源