论文标题

无限中子物质的基准计算具有现实的两核势和三核电位

Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials

论文作者

Lovato, A., Bombaci, I., Logoteta, D., Piarulli, M., Wiringa, R. B.

论文摘要

我们介绍了从高度现实的哈密顿量中获得的无限中子物质状态的方程,其中包括核子核子和三核子坐标势。我们基准了三种独立的多体方法:Brueckner-Bethe-Goldstone(BBG),费米高键链/单操作链(FHNC/SOC)和辅助场扩散蒙特卡洛(AFDMC)。当Argonne $ v_ {18} $和Argonne $ v_ {6}^\ prime $ nucleon-nucleon电位与Urbana IX IX三体力相结合时,我们发现它们提供类似状态方程。仅在大约1.5的密度下,核饱和度密度($ρ_0= 0.16 \,\ rm {fm}^{ - 3} $)fHNC/SOC能量明显低于其他两种方法。 AFDMC计算均采用所有拟合的诺福克电位,用于再现实验性的Trinucleon地基态能量和$ nd $ doublet散射长度的产生与中子液滴的形成有关的非物质结合的中子物质。在拟合程序中包括tritium $β$ -DECAY,如诺福克省第二家族一样,可以减轻但不能完全解决这个问题。在诺福克相互作用的子集中发现了BBG和AFDMC结果之间的一个很好的一致性,而诺福克相互作用的子集不会导致中子倒塌,而状态的FHNC/SOC方程则适度较软。

We present the equation of state of infinite neutron matter as obtained from highly-realistic Hamiltonians that include nucleon-nucleon and three-nucleon coordinate-space potentials. We benchmark three independent many-body methods: Brueckner-Bethe-Goldstone (BBG), Fermi hypernetted chain/single-operator chain (FHNC/SOC), and auxiliary-field diffusion Monte Carlo (AFDMC). We find them to provide similar equations of state when the Argonne $v_{18}$ and the Argonne $v_{6}^\prime$ nucleon-nucleon potentials are used in combination with the Urbana IX three-body force. Only at densities larger than about 1.5 the nuclear saturation density ($ρ_0 = 0.16\,\rm{fm}^{-3}$) the FHNC/SOC energies are appreciably lower than the other two approaches. The AFDMC calculations carried out with all of the Norfolk potentials fitted to reproduce the experimental trinucleon ground-state energies and $nd$ doublet scattering length yield unphysically bound neutron matter, associated with the formation of neutron droplets. Including tritium $β$-decay in the fitting procedure, as in the second family of Norfolk potentials, mitigates but does not completely resolve this problem. An excellent agreement between the BBG and AFDMC results is found for the subset of Norfolk interactions that do not make neutron-matter collapse, while the FHNC/SOC equations of state are moderately softer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源