论文标题
VLAD-VSA:跨域面部表现攻击检测检测词汇分离和适应
VLAD-VSA: Cross-Domain Face Presentation Attack Detection with Vocabulary Separation and Adaptation
论文作者
论文摘要
对于面部表现攻击检测(PAD),大多数欺骗提示都是微妙的本地图像模式(例如,本地图像失真,3D掩码边缘和剪切的照片边缘)。但是,现有PAD的表示与简单的全局合并方法起作用,但是,将失去局部功能可区分性。在本文中,采用了VLAD聚合方法来量化视觉词汇在本地划分特征空间的局部特征,因此可以保留本地可区分性。我们进一步提出了词汇分离和适应方法,以修改vlad以进行跨域填充。所提出的词汇分离方法将词汇分为域共享和特定领域的视觉单词,以应对跨域场景下的生物和攻击面的多样性。所提出的词汇适应方法模仿了端到端训练中K均值算法的最大化步骤,该步骤可以保证视觉单词接近分配的局部特征的中心,从而带来了强大的相似性测量。我们提供了插图和广泛的实验,以证明VLAD的有效性,并在标准跨域基准测试中提出了词汇分离和适应方法。这些代码可在https://github.com/liubinggunzu/vlad-vsa上找到。
For face presentation attack detection (PAD), most of the spoofing cues are subtle, local image patterns (e.g., local image distortion, 3D mask edge and cut photo edges). The representations of existing PAD works with simple global pooling method, however, lose the local feature discriminability. In this paper, the VLAD aggregation method is adopted to quantize local features with visual vocabulary locally partitioning the feature space, and hence preserve the local discriminability. We further propose the vocabulary separation and adaptation method to modify VLAD for cross-domain PADtask. The proposed vocabulary separation method divides vocabulary into domain-shared and domain-specific visual words to cope with the diversity of live and attack faces under the cross-domain scenario. The proposed vocabulary adaptation method imitates the maximization step of the k-means algorithm in the end-to-end training, which guarantees the visual words be close to the center of assigned local features and thus brings robust similarity measurement. We give illustrations and extensive experiments to demonstrate the effectiveness of VLAD with the proposed vocabulary separation and adaptation method on standard cross-domain PAD benchmarks. The codes are available at https://github.com/Liubinggunzu/VLAD-VSA.