论文标题

Openran Gym:一个开放式工具箱,用于数据收集和实验的O-Ran中的AI

OpenRAN Gym: An Open Toolbox for Data Collection and Experimentation with AI in O-RAN

论文作者

Bonati, Leonardo, Polese, Michele, D'Oro, Salvatore, Basagni, Stefano, Melodia, Tommaso

论文摘要

开放式无线电访问网络(RAN)体系结构将在下一代蜂窝网络中启用互操作性,开放性和程序化数据驱动的控制。但是,开发可扩展和高效的数据驱动算法,这些算法可以在各种部署中概括并优化RAN性能是一项复杂的壮举,截至今天截至今天,这在很大程度上都没有解决。具体而言,为网络控制和推理设计有效的数据驱动算法的能力最少需要(i)访问大型,丰富和异质性数据集; (ii)在受控但现实的环境中进行大规模测试,以及(iii)软件管道以自动化数据收集和实验。为了促进这些任务,在本文中,我们提出了OpenRan Gym,这是一种实用,开放,实验性的工具箱,可在Next Generation Open Ran Ran Systems中提供端到端设计,数据收集和测试工作流程。 OpenRan Gym在软件框架上建立了用于收集大型数据集并控制控制的软件框架,以及用于实验性无线平台的轻量级O-RAN环境。我们首先提供OpenRan健身房的概述,然后描述如何用于收集数据,设计和培训人工智能和基于机器学习的O-RAN应用程序(XAPPS),并在软件式运行中测试XAPP。然后,我们提供了两个XAPP设计的示例,该XAPP设计了OpenRan Gym,用于控制一个大型网络,其中有7个基站和42位用户部署在斗兽场测试床上。 OpenRan Gym及其软件组件是开源的,并且对于研究社区来说是公开提供的。

Open Radio Access Network (RAN) architectures will enable interoperability, openness, and programmatic data-driven control in next generation cellular networks. However, developing scalable and efficient data-driven algorithms that can generalize across diverse deployments and optimize RAN performance is a complex feat, largely unaddressed as of today. Specifically, the ability to design efficient data-driven algorithms for network control and inference requires at a minimum (i) access to large, rich, and heterogeneous datasets; (ii) testing at scale in controlled but realistic environments, and (iii) software pipelines to automate data collection and experimentation. To facilitate these tasks, in this paper we propose OpenRAN Gym, a practical, open, experimental toolbox that provides end-to-end design, data collection, and testing workflows for intelligent control in next generation Open RAN systems. OpenRAN Gym builds on software frameworks for the collection of large datasets and RAN control, and on a lightweight O-RAN environment for experimental wireless platforms. We first provide an overview of OpenRAN Gym and then describe how it can be used to collect data, to design and train artificial intelligence and machine learning-based O-RAN applications (xApps), and to test xApps on a softwarized RAN. Then, we provide an example of two xApps designed with OpenRAN Gym and used to control a large-scale network with 7 base stations and 42 users deployed on the Colosseum testbed. OpenRAN Gym and its software components are open source and publicly-available to the research community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源