论文标题

$ f(r_ {μνρσ})$量子重态的功能重效率

Functional Renormalisation for $f(R_{μνρσ})$ Quantum Gravity

论文作者

Kluth, Yannick, Litim, Daniel F.

论文摘要

我们在任何维度上得出新的功能性重量级化组流量,以实现量子重力。关键的新成就是方程适用于任何重力理论,其基础Lagrangian $ \ sim f(r_ {μνρσ})$是riemann tensor和倒数度量的函数。结果集中利用最大对称空间的好处来评估操作员轨迹。该框架具有高度的用途,并提供了广泛的新应用,以研究爱因斯坦重力扩展的量子引力效应,其中许多迄今已遥不可及。给出了Einstein-Hilbert重力,高斯 - 骨网和选定的高级重力理论的相图和样品流。我们还提供了一种算法来找到一般多项式黎曼曲率相互作用的流动。该设置极大地增强了固定点搜索的范围,从而实现了新型的搜索策略,包括多项式曲率不变性跨度的操作员空间,以及与宇宙学相关的一般相对论的扩展。表明了进一步的含义,以及与重力的链接。

We derive new functional renormalisation group flows for quantum gravity, in any dimension. The key new achievement is that the equations apply for any theory of gravity whose underlying Lagrangian $\sim f(R_{μνρσ})$ is a function of the Riemann tensor and the inverse metric. The results centrally exploit the benefits of maximally symmetric spaces for the evaluation of operator traces. The framework is highly versatile and offers a wide range of new applications to study quantum gravitational effects in extensions of Einstein gravity, many of which have hitherto been out of reach. The phase diagram and sample flows for Einstein-Hilbert gravity, Gauss-Bonnet, and selected higher-order theories of gravity are given. We also provide an algorithm to find the flow for general polynomial Riemann curvature interactions. The setup vastly enhances the reach of fixed point searches, enabling novel types of search strategies including across the operator space spanned by polynomial curvature invariants, and in extensions of general relativity relevant for cosmology. Further implications, and links with unimodular versions of gravity are indicated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源