论文标题

最佳的多代理路径查找预先限制的计划任务

Optimal Multi-Agent Path Finding for Precedence Constrained Planning Tasks

论文作者

Kedia, Kushal, Jenamani, Rajat Kumar, Hazra, Aritra, Chakrabarti, Partha Pratim

论文摘要

多代理路径查找(MAPF)是从启动位置到最终位置的多个代理的无冲突路径的问题。我们考虑对此问题的扩展,优先限制的多代理路径查找(PC-MAPF),其中代理被分配了一系列计划任务,其中包含它们之间的优先级约束。 PC-MAPF具有各种应用程序,例如在多代理拾取和交付问题中,某些对象可能需要多个代理来协作拾取并统一移动它们。仓库组装问题也出现了优先限制,在制造任务开始之前,必须制造和交付其输入资源。我们提出了一种新颖的算法,优先级的基于冲突的搜索(PC-CB),该搜索为这类问题找到了最佳的解决方案。 PC-CBS利用优先限制的任务图来为每个计划任务定义有效的间隔,并在遇到优先级冲突时对其进行更新。我们在各种仓库组件以及多代理拾取和交付任务上基准了该算法的性能,并使用它来评估最近提出的有效基线的亚典型性。

Multi-Agent Path Finding (MAPF) is the problem of finding collision-free paths for multiple agents from their start locations to end locations. We consider an extension to this problem, Precedence Constrained Multi-Agent Path Finding (PC-MAPF), wherein agents are assigned a sequence of planning tasks that contain precedence constraints between them. PC-MAPF has various applications, for example in multi-agent pickup and delivery problems where some objects might require multiple agents to collaboratively pickup and move them in unison. Precedence constraints also arise in warehouse assembly problems where before a manufacturing task can begin, its input resources must be manufactured and delivered. We propose a novel algorithm, Precedence Constrained Conflict Based Search (PC-CBS), which finds makespan-optimal solutions for this class of problems. PC-CBS utilizes a Precedence-Constrained Task-Graph to define valid intervals for each planning task and updates them when precedence conflicts are encountered. We benchmark the performance of this algorithm over various warehouse assembly, and multi-agent pickup and delivery tasks, and use it to evaluate the sub-optimality of a recently proposed efficient baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源