论文标题
多次无限方法的自适应时间步长控制
Adaptive time step control for multirate infinitesimal methods
论文作者
论文摘要
数十年来,多胎方法已用于暂时进化的初价问题,其中不同的组件在不同的时间尺度上演变,因此这些组件的不同步骤尺寸可能会导致计算效率提高。通常,此类方法根据实验或稳定性考虑选择了这些不同的步骤大小。对于在单个时间尺度上进化的问题,努力控制局部时间误差的适应性方法被广泛用于实现所需准确性的数值结果,同时减轻了使用不同时间步长尺寸的手动实验的需求。但是,出版物记录中存在一个显着的差距,该记录关于用于多发性方法的自适应时间步长控制器的开发。在本文中,我们将Gustafsson(1994)的单位控制器工作扩展到了多条方法设置。具体而言,我们基于多项式近似值开发控制器,该控制器针对多条件无限(MRI)方法中的“快速”和“慢”时间尺度的主误差函数。我们还研究了多种方法,以估计MRI方法中每个时间尺度产生的误差。然后,我们在数值上评估了一系列多次测试问题的拟议多级控制器和误差估计策略,将其性能与估计的最佳性能进行了比较。通过这项工作,我们结合了这些方法中最大的性能者,以达到一组多向自适应时间步长控制器,这些步骤控制器可稳健地实现所需的解决方案准确性,并以最小的计算工作。
Multirate methods have been used for decades to temporally evolve initial-value problems in which different components evolve on distinct time scales, and thus use of different step sizes for these components can result in increased computational efficiency. Generally, such methods select these different step sizes based on experimentation or stability considerations. For problems that evolve on a single time scale, adaptivity approaches that strive to control local temporal error are widely used to achieve numerical results of a desired accuracy with minimal computational effort, while alleviating the need for manual experimentation with different time step sizes. However, there is a notable gap in the publication record on the development of adaptive time-step controllers for multirate methods. In this paper, we extend the single-rate controller work of Gustafsson (1994) to the multirate method setting. Specifically, we develop controllers based on polynomial approximations to the principal error functions for both the "fast" and "slow" time scales within multirate infinitesimal (MRI) methods. We additionally investigate a variety of approaches for estimating the errors arising from each time scale within MRI methods. We then numerically evaluate the proposed multirate controllers and error estimation strategies on a range of multirate test problems, comparing their performance against an estimated optimal performance. Through this work, we combine the most performant of these approaches to arrive at a set of multirate adaptive time step controllers that robustly achieve desired solution accuracy with minimal computational effort.