论文标题
数据驱动的交通分配:一种使用图形卷积神经网络学习交通流模式的新颖方法
Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic Flow Patterns Using a Graph Convolutional Neural Network
论文作者
论文摘要
我们提供了一种新型的数据驱动的学习交通流量流量模式的方法,鉴于许多原点到目的地(OD)旅行需求和网络的链接流都可以使用。我们没有估算某些用户行为(例如用户平衡或最佳系统)的交通流模式,而是在这里探索直接从数据中学习这些流模式的想法。为了实现这一想法,我们已经将流量分配问题作为数据驱动的学习问题,并开发了一种基于神经网络的框架,称为Graph卷积神经网络(GCNN)来解决它。提出的框架以有效的方式代表运输网络和OD需求,并利用从节点到链接的多个OD需求的扩散过程。我们验证了模型的解决方案,以通过在Sioux Falls和East Massachusetts网络上运行基于静态用户平衡的交通分配而产生的分析解决方案。验证结果表明,实现的GCNN模型可以很好地学习流程模式,而在不同的拥塞条件下,两个网络的实际和估计链路流之间的平均绝对差异不到2%。当模型的培训完成后,它可以立即确定大型网络的交通流。因此,这种方法可以克服通过大规模网络部署流量分配模型的挑战,并在数据驱动网络建模中开放研究的新方向。
We present a novel data-driven approach of learning traffic flow patterns of a transportation network given that many instances of origin to destination (OD) travel demand and link flows of the network are available. Instead of estimating traffic flow patterns assuming certain user behavior (e.g., user equilibrium or system optimal), here we explore the idea of learning those flow patterns directly from the data. To implement this idea, we have formulated the traffic-assignment problem as a data-driven learning problem and developed a neural network-based framework known as Graph Convolutional Neural Network (GCNN) to solve it. The proposed framework represents the transportation network and OD demand in an efficient way and utilizes the diffusion process of multiple OD demands from nodes to links. We validate the solutions of the model against analytical solutions generated from running static user equilibrium-based traffic assignments over Sioux Falls and East Massachusetts networks. The validation result shows that the implemented GCNN model can learn the flow patterns very well with less than 2% mean absolute difference between the actual and estimated link flows for both networks under varying congested conditions. When the training of the model is complete, it can instantly determine the traffic flows of a large-scale network. Hence this approach can overcome the challenges of deploying traffic assignment models over large-scale networks and open new directions of research in data-driven network modeling.