论文标题
乐观学习在线缓存
Online Caching with Optimistic Learning
论文作者
论文摘要
对于内容分销网络,在线社交网络和边缘计算服务等方面,有效的在线缓存政策的设计是一个越来越重要的问题。本文提出了一种新的算法工具箱,用于通过乐观的在线学习来解决此问题。我们基于以下规范化领导者(FTRL)框架,该框架进一步开发,以包括对文件请求的预测,我们设计了针对具有固定尺寸的缓存或弹性租赁的租赁的双方网络的在线caching算法,约为受时间平衡预算约束。这些预测由内容建议系统提供,该系统影响用户查看活动,因此自然可以减少缓存网络对未来请求的不确定性。我们证明,提出的乐观学习缓存政策可以实现零零绩效损失(遗憾),以实现完美的预测,并保持最佳的遗憾约束$ O(\ sqrt t)$,即使是为了进行任意BAD的预测。通过详细的痕量驱动数值测试评估所提出的算法的性能。
The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity, and hence can naturally reduce the caching network's uncertainty about future requests. We prove that the proposed optimistic learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the best achievable regret bound $O(\sqrt T)$ even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.