论文标题

具有可区分拉普拉斯近似值的深神经网络中的不变性学习

Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations

论文作者

Immer, Alexander, van der Ouderaa, Tycho F. A., Rätsch, Gunnar, Fortuin, Vincent, van der Wilk, Mark

论文摘要

通过实施以下知识,即输入保留输出的某些转换,通常将数据增强用于提高深度学习的性能。当前,数据增强参数是通过人为努力和昂贵的交叉验证来选择的,这使得应用于新数据集很麻烦。我们开发了一种基于梯度的方便方法,用于在培训深神经网络期间选择数据扩展而无需验证数据。我们的方法依赖于措辞扩展作为神经网络功能的先前分布的不变性,这使我们可以使用贝叶斯模型选择来学习它。这已被证明在高斯过程中起作用,但对于深层神经网络却没有。我们提出了一个可区分的Kronecker因拉普拉斯(Kroneck)的拉普拉斯(Laplace)近似值作为我们的目标,可以在没有人类监督或验证数据的情况下优化该目标。我们表明,我们的方法可以成功地恢复数据中存在的不断增长,这提高了图像数据集的概括和数据效率。

Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the data augmentation parameters are chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation without validation data during training of a deep neural network. Our approach relies on phrasing data augmentation as an invariance in the prior distribution on the functions of a neural network, which allows us to learn it using Bayesian model selection. This has been shown to work in Gaussian processes, but not yet for deep neural networks. We propose a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation and data efficiency on image datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源