论文标题

整体多型曲曲面的扭转阶层的扭转。

Torsionfreeness for divisor class groups of toric rings of integral polytopes

论文作者

Matsushita, Koji

论文摘要

在本文中,我们为$ \ operatoTorname {cl}(\ bbbk [p])$提供了一些足够条件,为torsionfree,其中$ \ operatatorName {cl}(\ bbbk [p])$表示triac ring $ \ bbbk $ \ bbbk $ \ bbbk $ f $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $ p $。 We prove that $\operatorname{Cl}(\Bbbk[P])$ is torsionfree if $P$ is compressed, and $\operatorname{Cl}(\Bbbk[P])$ is torsionfree if $P$ is a $(0,1)$-polytope which has at most $\dim P+2$ facets.此外,我们表征了$(0,1)$ - polytopes $ \ operatatorName {cl}(\ bbbk [p])\ cong \ mathbb {z} $的曲线环。

In the present paper, we give some sufficient conditions for $\operatorname{Cl}(\Bbbk[P])$ to be torsionfree, where $\operatorname{Cl}(\Bbbk[P])$ denote the divisor class group of the toric ring $\Bbbk[P]$ of an integral polytope $P$. We prove that $\operatorname{Cl}(\Bbbk[P])$ is torsionfree if $P$ is compressed, and $\operatorname{Cl}(\Bbbk[P])$ is torsionfree if $P$ is a $(0,1)$-polytope which has at most $\dim P+2$ facets. Moreover, we characterize the toric rings of $(0,1)$-polytopes in the case $\operatorname{Cl}(\Bbbk[P])\cong \mathbb{Z}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源