论文标题

具有天然分级丝状nilraidal的可溶解谎言谎言的扩展

Extensions of solvable Lie algebras with naturally graded filiform nilradical

论文作者

Khudoyberdiyev, A. Kh., Sheraliyeva, S. A.

论文摘要

在这项工作中,我们考虑了与天然分级的丝状nilradicals的可溶性谎言代数的扩展。请注意,存在两个天然分级的丝状谎言代数$ n_ {n,1} $和$ q_ {2n}。$我们找到了代数$ n_ {n,1} $的所有一维中心扩展,并显示$ q_ {2n} $的任何扩展。之后,我们发现可溶解的一维扩展名用nilradical $ n_ {n,1} $。我们证明,有一个唯一的非分类中心扩展,可解决的lie代数,带有nilradical $ n_ {n,1} $的最大编码。此外,所有可解决的谎言代数的一维扩展与nilradical $ n_ {n,1} $相同,其编纂等于一个,并将这些可解的代数与nilradicals与nilradicals进行比较是Algebra $ n_ $ n_ n _ n _ n,1} $的一维中心。

In this work we consider extensions of solvable Lie algebras with naturally graded filiform nilradicals. Note that there exist two naturally graded filiform Lie algebras $n_{n, 1}$ and $Q_{2n}.$ We find all one-dimensional central extensions of the algebra $n_{n, 1}$ and show that any extension of $Q_{2n}$ is split. After that we find one-dimensional extensions of solvable Lie algebras with nilradical $n_{n, 1}$. We prove that there exists a unique non-split central extension of solvable Lie algebras with nilradical $n_{n, 1}$ of maximal codimension. Moreover, all one-dimensional extensions of solvable Lie algebras with nilradical $n_{n, 1}$ whose codimension is equal to one are found and compared these solvable algebras with the solvable algebras with nilradicals are one-dimensional central extension of algebra $n_{n, 1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源