论文标题
3D第二量化的Schrödinger-Newton非本地孤子的随机步行和非豪斯性
Random walk and non-Gaussianity of the 3D second-quantized Schrödinger-Newton nonlocal soliton
论文作者
论文摘要
非本地量子流体作为量子模拟和技术的暗模型和工具出现。然而,强烈的非线性制度,例如涉及多维自定位孤立波的那些涉及量子特征的人。我们研究了第二定量非局部非线性schroedinger-newton方程中3D+1孤子的动力学。从理论上讲,我们研究了质量中心和其他参数的量子扩散,从而改变了相互作用的长度。由密度矩阵阳性p-eprentation产生的ITO偏微分方程的3D+1模拟验证了理论分析。数值结果揭示了孤子的非高斯统计量的开始,这可能会信号量子杀菌作用,并成为量子计算的资源。非高斯性是由孤子参数量子扩散和稳定不变传播之间的相互作用引起的。波动和非高斯性是任何非局部性和维度的普遍影响。
Nonlocal quantum fluids emerge as dark-matter models and tools for quantum simulations and technologies. However, strongly nonlinear regimes, like those involving multi-dimensional self-localized solitary waves, are marginally explored for what concerns quantum features. We study the dynamics of 3D+1 solitons in the second-quantized nonlocal nonlinear Schroedinger-Newton equation. We theoretically investigate the quantum diffusion of the soliton center of mass and other parameters, varying the interaction length. 3D+1 simulations of the Ito partial differential equations arising from the positive P-representation of the density matrix validate the theoretical analysis. The numerical results unveil the onset of non-Gaussian statistics of the soliton, which may signal quantum-gravitational effects and be a resource for quantum computing. The non-Gaussianity arises from the interplay between the soliton parameter quantum diffusion and stable invariant propagation. The fluctuations and the non-Gaussianity are universal effects expected for any nonlocality and dimensionality.