论文标题

具有非本地相互作用和非凸能的离散晶格中成核和传播过渡应力的热控制

Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy

论文作者

Cannizzo, Andrea, Bellino, Luca, Florio, Giuseppe, Puglisi, Giuseppe, Giordano, Stefano

论文摘要

非本地和非凸能代表了调节许多系统在生物物理学和材料科学中的复杂行为的基本相互作用。我们研究一个能够代表几种生物荧光分子的行为和固体力学中相变现象的行为的一个维度。为了阐明热波动对此类系统非convex非局部行为的影响,我们考虑了依靠热力学和统计力学的三种不同复杂性的模型:(i)一个与温度相关的接口数量的ISing-type方案,在不同的域之间进行了依赖温度的接口数,(ii)基于两个电动域之间的zipper模型(ii)基于两个电动域的单个界面模型(ii III),(II III)(III II)。在所有三种情况下,我们都在等距条件下研究该系统(规定的延伸,与统计力学的Helmholtz合奏匹配)和等距条件(施加力,与Gibbs集合匹配)。有趣的是,在Helmholtz集合中,分析显示了以温度依赖性力平台(Maxwell应力)和力峰(成核应力)为特征的理论力扩展关系来解释实验观察到的热效应的可能性。我们还获得了系统的配置属性的明确关系(相位分数的预期值和接口数)。此外,我们能够证明在热力学极限中两个热力学合奏的等效性。我们最终讨论了与文献数据的比较,显示了所提出的模型在描述已知实验效应时的效率。

Non-local and non-convex energies represent fundamental interacting effects regulating the complex behavior of many systems in biophysics and materials science. We study one dimensional, prototypical schemes able to represent the behavior of several biomacromolecules and the phase transformation phenomena in solid mechanics. To elucidate the effects of thermal fluctuations on the non-convex non-local behavior of such systems, we consider three models of different complexity relying on thermodynamics and statistical mechanics: (i) an Ising-type scheme with an arbitrary temperature dependent number of interfaces between different domains, (ii) a zipper model with a single interface between two evolving domains, and (iii) an approximation based on the stationary phase method. In all three cases, we study the system under both isometric condition (prescribed extension, matching with the Helmholtz ensemble of the statistical mechanics) and isotensional condition (applied force, matching with the Gibbs ensemble). Interestingly, in the Helmholtz ensemble the analysis shows the possibility of interpreting the experimentally observed thermal effects with the theoretical force-extension relation characterized by a temperature dependent force plateau (Maxwell stress) and a force peak (nucleation stress). We obtain explicit relations for the configurational properties of the system as well (expected values of the phase fractions and number of interfaces). Moreover, we are able to prove the equivalence of the two thermodynamic ensembles in the thermodynamic limit. We finally discuss the comparison with data from the literature showing the efficiency of the proposed model in describing known experimental effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源