论文标题
学习信息和域独立表示,以通过现实世界数据推断为因果效应
Learning Infomax and Domain-Independent Representations for Causal Effect Inference with Real-World Data
论文作者
论文摘要
对现实世界数据的因果推断,最重要的挑战是处理由治疗选择偏见引起的不同治疗方案的协变量中的不平衡。为了解决这个问题,最近的文献探索了基于不同域差异指标(例如Wasserstein距离,最大平均差异,依赖位置的度量和域重叠)的域不变表示学习。在本文中,我们揭示了这些策略的弱点,即它们在执行域不变性时会导致预测信息的丢失;治疗效果估计的性能是不稳定的,这在很大程度上依赖于域分布的特征和域差异指标的选择。在信息理论的推动下,我们建议学习无关和域无依赖的表示,以解决上述难题。我们的方法利用了全局特征表示和单个特征表示之间的共同信息,以及特征表示和治疗分配预测之间的相互信息,以最大程度地捕获治疗组和对照组的共同预测信息。此外,我们的方法滤除了工具和无关的变量的影响,因此有效地提高了潜在结果的预测能力。合成数据集和现实世界数据集的实验结果表明,我们的方法在因果效应推断上实现了最新的性能。此外,当面对具有不同特征的数据分布,复杂可变类型和严重协变量失衡的数据时,我们的方法表现出可靠的预测性能。
The foremost challenge to causal inference with real-world data is to handle the imbalance in the covariates with respect to different treatment options, caused by treatment selection bias. To address this issue, recent literature has explored domain-invariant representation learning based on different domain divergence metrics (e.g., Wasserstein distance, maximum mean discrepancy, position-dependent metric, and domain overlap). In this paper, we reveal the weaknesses of these strategies, i.e., they lead to the loss of predictive information when enforcing the domain invariance; and the treatment effect estimation performance is unstable, which heavily relies on the characteristics of the domain distributions and the choice of domain divergence metrics. Motivated by information theory, we propose to learn the Infomax and Domain-Independent Representations to solve the above puzzles. Our method utilizes the mutual information between the global feature representations and individual feature representations, and the mutual information between feature representations and treatment assignment predictions, in order to maximally capture the common predictive information for both treatment and control groups. Moreover, our method filters out the influence of instrumental and irrelevant variables, and thus it effectively increases the predictive ability of potential outcomes. Experimental results on both the synthetic and real-world datasets show that our method achieves state-of-the-art performance on causal effect inference. Moreover, our method exhibits reliable prediction performances when facing data with different characteristics of data distributions, complicated variable types, and severe covariate imbalance.