论文标题

用于量子计算机上量子数据分类的张量网络鉴别架构

A tensor network discriminator architecture for classification of quantum data on quantum computers

论文作者

Wall, Michael L., Titum, Paraj, Quiroz, Gregory, Foss-Feig, Michael, Hazzard, Kaden R. A.

论文摘要

我们证明了使用矩阵产品状态(MPS)模型使用全息算法在量子计算机上区分量子数据,重点是基于从中提取的$ l $ l $量量子数据对翻译不变的量子状态进行分类。我们详细详细介绍了一个过程,其中使用来自单光实验测量的数据来优化等距张量网络,使用贪婪的编译启发式方法将张量汇编为单位量子操作,对所得量子电路模型的参数优化,可以消除等级量量量量的量化量的量量量的量化量的量化量的量化量量的量化量或量量的产品。我们从大部分的一维横向场ISING模型(TFIM)中深处的六个位点单发测量的合成数据集上展示了我们的训练和推理结构。我们使用TFIM的已知量子相变,使用纠缠的输入数据对Quantinuum的H1-2捕获离子量子计算机的模型进行实验评估。在过渡点附近的实验数据上使用线性回归,我们发现$ H = 0.962 $的临界横向场和$ 0.994 $的张量网络歧视器的预测分别为债券维度$χ= 2 $ = 2 $和$χ= 4 $。尽管远离过渡点的数据训练,但这些预测与已知的过渡位置相比,$ H = 1 $。我们的技术以数据驱动和硬件感知的时尚和强大的经典技术来确定短深度变化量子电路的家庭,以预先进行模型参数,并且可以将机器学习超出机器学习,以在量子网络上应用于量子计算机上的无数应用,例如量子模拟和误差校正。

We demonstrate the use of matrix product state (MPS) models for discriminating quantum data on quantum computers using holographic algorithms, focusing on classifying a translationally invariant quantum state based on $L$ qubits of quantum data extracted from it. We detail a process in which data from single-shot experimental measurements are used to optimize an isometric tensor network, the tensors are compiled into unitary quantum operations using greedy compilation heuristics, parameter optimization on the resulting quantum circuit model removes the post-selection requirements of the isometric tensor model, and the resulting quantum model is inferenced on either product state or entangled quantum data. We demonstrate our training and inference architecture on a synthetic dataset of six-site single-shot measurements from the bulk of a one-dimensional transverse field Ising model (TFIM) deep in its antiferromagnetic and paramagnetic phases. We experimentally evaluate models on Quantinuum's H1-2 trapped ion quantum computer using entangled input data modeled as translationally invariant, bond dimension 4 MPSs across the known quantum phase transition of the TFIM. Using linear regression on the experimental data near the transition point, we find predictions for the critical transverse field of $h=0.962$ and $0.994$ for tensor network discriminators of bond dimension $χ=2$ and $χ=4$, respectively. These predictions compare favorably with the known transition location of $h=1$ despite training on data far from the transition point. Our techniques identify families of short-depth variational quantum circuits in a data-driven and hardware-aware fashion and robust classical techniques to precondition the model parameters, and can be adapted beyond machine learning to myriad applications of tensor networks on quantum computers, such as quantum simulation and error correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源