论文标题

研究特征对量子机学习模型的重要性

Study of Feature Importance for Quantum Machine Learning Models

论文作者

Baughman, Aaron, Yogaraj, Kavitha, Hebbar, Raja, Ghosh, Sudeep, Haq, Rukhsan Ul, Chhabra, Yoshika

论文摘要

预测器重要性是经典和量子机学习(QML)数据预处理管道的关键部分。这项工作介绍了此类研究的第一个研究,其中探索了对QML模型的重要性与其经典的机器学习(CML)等效物进行了对比。我们开发了一个混合量子式体系结构,其中训练了QML模型,并根据现实世界数据集上的经典算法计算特征重要性值。该体系结构已在ESPN幻想足球数据上使用Qiskit StateSvector模拟器和IBM量子硬件(例如IBMQ Mumbai和IBMQ Montreal Systems)实施。即使我们处于嘈杂的中间量子量子(NISQ)时代,物理量子计算结果还是有希望的。为了促进当前量子标尺,我们创建了一个数据分层,模型聚合和新颖的验证方法。值得注意的是,与经典模型相比,量子模型的特征重要性具有更高的变化。我们可以证明,通过多样性测量值,等效的QML和CML模型是互补的。 QML和CML之间的多样性表明,两种方法都可以以不同的方式促进解决方案。在本文中,我们关注量子支持向量分类器(QSVC),变分量子电路(VQC)及其经典对应物。 ESPN和IBM幻想足球贸易助理将高级统计分析与Watson Discovery的自然语言处理相结合,以提供公平的个性化贸易建议。在这里,已经考虑了每个播放器的播放器评估数据,并且可以扩展此工作以计算其他QML模型(例如量子Boltzmann机器)的特征重要性。

Predictor importance is a crucial part of data preprocessing pipelines in classical and quantum machine learning (QML). This work presents the first study of its kind in which feature importance for QML models has been explored and contrasted against their classical machine learning (CML) equivalents. We developed a hybrid quantum-classical architecture where QML models are trained and feature importance values are calculated from classical algorithms on a real-world dataset. This architecture has been implemented on ESPN Fantasy Football data using Qiskit statevector simulators and IBM quantum hardware such as the IBMQ Mumbai and IBMQ Montreal systems. Even though we are in the Noisy Intermediate-Scale Quantum (NISQ) era, the physical quantum computing results are promising. To facilitate current quantum scale, we created a data tiering, model aggregation, and novel validation methods. Notably, the feature importance magnitudes from the quantum models had a much higher variation when contrasted to classical models. We can show that equivalent QML and CML models are complementary through diversity measurements. The diversity between QML and CML demonstrates that both approaches can contribute to a solution in different ways. Within this paper we focus on Quantum Support Vector Classifiers (QSVC), Variational Quantum Circuit (VQC), and their classical counterparts. The ESPN and IBM fantasy football Trade Assistant combines advanced statistical analysis with the natural language processing of Watson Discovery to serve up personalized trade recommendations that are fair. Here, player valuation data of each player has been considered and this work can be extended to calculate the feature importance of other QML models such as Quantum Boltzmann machines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源