论文标题

树木遏制问题的QUBO公式

A QUBO formulation for the Tree Containment problem

论文作者

Dinneen, Michael J., Ghodla, Pankaj S., Linz, Simone

论文摘要

系统发育(进化)树木和网络是叶片标记的图,可广泛用来代表物种,语言,癌细胞和病毒等实体之间的进化关系。为了重建和分析系统发育网络,确定给定的根源系统发育网络是否嵌入给定的根源系统发育树的问题是经常感兴趣的问题。对于某些类别的系统发育网络,该问题正式称为树木遏制,通常是NP完整的,并且可以解决多项式时间。在本文中,我们将量子计算和系统发育学的思想连接起来,以提出有效的二次不受约束的二进制优化公式,以在一般环境中为树木遏制。对于树木遏制的实例(n,t),其中n是一个具有N_N顶点的系统发育网络,T是一个具有N_T顶点的系统发育树,我们公式所需的逻辑QUBIT数为O(N_N N_T)。

Phylogenetic (evolutionary) trees and networks are leaf-labeled graphs that are widely used to represent the evolutionary relationships between entities such as species, languages, cancer cells, and viruses. To reconstruct and analyze phylogenetic networks, the problem of deciding whether or not a given rooted phylogenetic network embeds a given rooted phylogenetic tree is of recurring interest. This problem, formally know as Tree Containment, is NP-complete in general and polynomial-time solvable for certain classes of phylogenetic networks. In this paper, we connect ideas from quantum computing and phylogenetics to present an efficient Quadratic Unconstrained Binary Optimization formulation for Tree Containment in the general setting. For an instance (N,T) of Tree Containment, where N is a phylogenetic network with n_N vertices and T is a phylogenetic tree with n_T vertices, the number of logical qubits that are required for our formulation is O(n_N n_T).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源