论文标题

控制保护法II:可压缩的Navier-Stokes方程

Controlling conservation laws II: compressible Navier-Stokes equations

论文作者

Li, Wuchen, Liu, Siting, Osher, Stanley

论文摘要

我们建议,研究和计算解决方案的解决方案,以解决一系列最佳控制问题,以解决保护法的双曲线系统及其粘性正则化。我们以压缩式Navier(BNS)为典型示例。我们首先为BN应用熵 - 内向通量条件。我们选择一个熵函数,然后将BNS重写为熵的通量和度量梯度的总和。然后,我们为BNS开发一个度量变异问题,BNS的临界点形成了原始的双重BNS系统。我们为变分系统设计有限的差异方案。保护定律的数值近似是隐含的。我们通过受原始二重混合梯度方法启发的算法解决了变异问题。这包括一种新方法,用于解决保护定律的隐式时间近似,这似乎是无条件稳定的。提出了几个数值示例,以证明所提出的算法的有效性。

We propose, study, and compute solutions to a class of optimal control problems for hyperbolic systems of conservation laws and their viscous regularization. We take barotropic compressible Navier--Stokes equations (BNS) as a canonical example. We first apply the entropy--entropy flux--metric condition for BNS. We select an entropy function and rewrite BNS to a summation of flux and metric gradient of entropy. We then develop a metric variational problem for BNS, whose critical points form a primal-dual BNS system. We design a finite difference scheme for the variational system. The numerical approximations of conservation laws are implicit in time. We solve the variational problem with an algorithm inspired by the primal-dual hybrid gradient method. This includes a new method for solving implicit time approximations for conservation laws, which seems to be unconditionally stable. Several numerical examples are presented to demonstrate the effectiveness of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源