论文标题

快速代数多机,用于块结构的密集和toeplitz Like-Plus-cross系统,该系统由非局部扩散问题引起

Fast algebraic multigrid for block-structured dense and Toeplitz-like-plus-Cross systems arising from nonlocal diffusion problems

论文作者

Chen, Minghua, Cao, Rongjun, Serra-Capizzano, Stefano

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Algebraic multigrid (AMG) is one of the most efficient iterative methods for solving large sparse system of equations. However, how to build/check restriction and prolongation operators in practical of AMG methods for nonsymmetric {\em sparse} systems is still an interesting open question [Brezina, Manteuffel, McCormick, Runge, and Sanders, SIAM J. Sci. Comput. (2010); Manteuffel and Southworth, SIAM J. Sci. Comput. (2019)]. This paper deals with the block-structured dense and Toeplitz-like-plus-Cross systems, including {\em nonsymmetric} indefinite, symmetric positive definite (SPD), arising from nonlocal diffusion problem and peridynamic problem. The simple (traditional) restriction operator and prolongation operator are employed in order to handle such block-structured dense and Toeplitz-like-plus-Cross systems, which is convenient and efficient when employing a fast AMG. We focus our efforts on providing the detailed proof of the convergence of the two-grid method for such SPD situations. The numerical experiments are performed in order to verify the convergence with a computational cost of only $\mathcal{O}(N \mbox{log} N)$ arithmetic operations, by using few fast Fourier transforms, where $N$ is the number of the grid points. To the best of our knowledge, this is the first contribution regarding Toeplitz-like-plus-Cross linear systems solved by means of a fast AMG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源