论文标题

抛物线差异不平等的不存在,外部域中对流术语

Nonexistence for parabolic differential inequalities with convection terms in exterior domains

论文作者

Jleli, Mohamed, Samet, Bessem, Sun, Yuhua

论文摘要

我们关注的是,对于一类半线性抛物线差异不平等的签名改变全球弱解决方案,在外部领域中具有对流术语。 $ t^α| x |^σ$的重量函数在功率非线性前面考虑。研究了两种类型的非均匀边界条件:Neumann-type和Dirichlet型边界条件。使用统一的方法,对于每种情况,我们为全球弱解决方案的不存在建立了足够的标准。当$α= 0 $时,获得了富士坦的关键指数。该指数比Zheng和Wang(2008)先前在统一的Neumann和Dirichlet边界条件的情况下大。

We are concerned with the nonexistence of sign-changing global weak solutions for a class of semilinear parabolic differential inequalities with convection terms in exterior domains. A weight function of the form $t^α|x|^σ$ is considered in front of the power nonlinearity. Two types of non-homogeneous boundary conditions are investigated: Neumann-type and Dirichlet-type boundary conditions. Using a unified approach, for each case, we establish sufficient criteria for the nonexistence of global weak solutions. When $α=0$, the critical exponent in the sense of Fujita is obtained. This exponent is bigger than that found previously by Zheng and Wang (2008) in the case of homogeneous Neumann and Dirichlet boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源