论文标题
中子和X射线反射率数据的神经网络分析:使用MLEFRECT,实验误差和功能工程的自动分析
Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering
论文作者
论文摘要
这项工作展示了Python软件包MLFlect,该软件包实现了优化的管道,用于使用机器学习对反射仪数据进行自动分析。该软件包结合了以前出版物中讨论的几种培训和数据处理技术。神经网络的预测足够准确,足够强大,可以作为随后可选的最小平方正方形(LMS)拟合的良好启动参数。结果表明,对于硅底物上各种薄膜的242个反射率曲线的大数据集,该管道可靠地发现,LMS的最低限度非常接近人类研究人员在应用物理知识和精心选择的边界条件下产生的拟合。此外,讨论了模拟数据和实验数据之间的差异及其对神经网络训练和性能的影响。实验测试集用于确定训练期间的最佳噪声水平。此外,利用神经网络的非常快速的预测时间来通过对数据的轻微变化来补偿系统错误。
This work demonstrates the Python package mlreflect which implements an optimized pipeline for the automized analysis of reflectometry data using machine learning. The package combines several training and data treatment techniques discussed in previous publications. The predictions made by the neural network are accurate and robust enough to serve as good starting parameters for an optional subsequent least mean squares (LMS) fit of the data. It is shown that for a large dataset of 242 reflectivity curves of various thin films on silicon substrates, the pipeline reliably finds an LMS minimum very close to a fit produced by a human researcher with the application of physical knowledge and carefully chosen boundary conditions. Furthermore, the differences between simulated and experimental data and their implications for the training and performance of neural networks are discussed. The experimental test set is used to determine the optimal noise level during training. Furthermore, the extremely fast prediction times of the neural network are leveraged to compensate for systematic errors by sampling slight variations of the data.