论文标题
在可运输能力假设下学习相对效应措施的新目标人群中的治疗效果
Learning about treatment effects in a new target population under transportability assumptions for relative effect measures
论文作者
论文摘要
流行病学家和应用统计学家通常认为,相对效应措施在协变量(例如风险比和平均比率)上有条件的措施在人群中是``可运输''。在这里,我们使用有条件的相对效应度量(例如,有条件的风险比或平均比率)可以从试验到目标人群进行运输。我们表明,相对效应测量的可运输能力在很大程度上与差异效应措施的运输能力不相容,除非治疗对平均而没有影响或愿意做出更强大的可运输性假设,这意味着相对和差异效应措施的可运输能力。然后,我们描述了如何在相对效应度量的可运输能力的假设下确定目标人群中的边际因果估计,而当我们对目标人群中新的实验治疗的有效性感兴趣时,唯一使用的治疗方法是在试验中评估的对照治疗方法。我们将这些结果扩展到考虑在试验中评估的对照治疗仅是目标人群中使用的一种治疗方法之一,在目标人群中的额外部分交换性假设下(即,目标人群中没有未达到混淆的部分假设)。我们还开发了识别结果,以使相对效应度量的可运输性所需的协变量仅是控制目标种群中混杂所需的协变量的一小部分。最后,我们建议可以在标准统计软件中轻松实现的估计器。
Epidemiologists and applied statisticians often believe that relative effect measures conditional on covariates, such as risk ratios and mean ratios, are ``transportable'' across populations. Here, we examine the identification of causal effects in a target population using an assumption that conditional relative effect measures (e.g., conditional risk ratios or mean ratios) are transportable from a trial to the target population. We show that transportability for relative effect measures is largely incompatible with transportability for difference effect measures, unless the treatment has no effect on average or one is willing to make even stronger transportability assumptions, which imply the transportability of both relative and difference effect measures. We then describe how marginal causal estimands in a target population can be identified under the assumption of transportability of relative effect measures, when we are interested in the effectiveness of a new experimental treatment in a target population where the only treatment in use is the control treatment evaluated in the trial. We extend these results to consider cases where the control treatment evaluated in the trial is only one of the treatments in use in the target population, under an additional partial exchangeability assumption in the target population (i.e., a partial assumption of no unmeasured confounding in the target population). We also develop identification results that allow for the covariates needed for transportability of relative effect measures to be only a small subset of the covariates needed to control confounding in the target population. Last, we propose estimators that can be easily implemented in standard statistical software.