论文标题
垂直堆叠层的偶极激子的集体层间配对和配对超流量
Collective interlayer pairing and pair superfluidity in vertically stacked layers of dipolar excitons
论文作者
论文摘要
已经建议层状的骨偶性流体托管层间分子结合态的冷凝物。但是,它的实验观察仍然难以捉摸。由最近的两项实验作品的动机[Hubert等,Phys。 Rev. X 9,021026(2019)和D. J. Choksy等人,物理学。 Rev. B 103 045126(2021)],理论上,我们使用数值精确的量子蒙特卡洛计算,这是在垂直堆叠的间接激子(IX)层中集体层间配对的实验签名。我们发现,与每一层相关的IX能量转移在非单调趋势之后与密度不平衡的函数相关,并在密度平衡下的跳跃不连续性,并与Interlayer IX IX分子间隙确定。这种行为区分了层间对的超流量和不同层中独立的偶极凝结。考虑到有限的温度和有限密度不平衡条件,我们发现了一系列的berezinskii-kosterlitz- thyless-thouless(BKT)过渡,最初是一对超级流体,只有在较低的温度下,才能进入两层的完全超流体。我们的结果可能会对GAAS双重量子井(DQW)双层结构中现有的实验观察的理论解释。此外,为了优化将来的研究中配对动力学的可见性,我们提供了一项分析,表明在GAAS和过渡金属二甲元基因(TMD)双层DQW异质结构中,可以清楚地观察到集体间层间配对并配对超级流体。
Layered bosonic dipolar fluids have been suggested to host a condensate of interlayer molecular bound states. However, its experimental observation has remained elusive. Motivated by two recent experimental works [Hubert et al., Phys. Rev. X 9, 021026 (2019) and D. J. Choksy et al., Phys. Rev. B 103 045126 (2021)], we theoretically study, using numerically exact quantum Monte Carlo calculations, the experimental signatures of collective interlayer pairing in vertically stacked indirect exciton (IX) layers. We find that IX energy shifts associated with each layer evolve non trivially as a function of density imbalance following a nonmonotonic trend with a jump discontinuity at density balance, identified with the interlayer IX molecule gap. This behavior discriminates between the superfluidity of interlayer bound pairs and independent dipole condensation in distinct layers. Considering finite temperature and finite density imbalance conditions, we find a cascade of Berezinskii--Kosterlitz--Thouless (BKT) transitions, initially into a pair superfluid and only then, at lower temperatures, into complete superfluidity of both layers. Our results may provide a theoretical interpretation of existing experimental observations in GaAs double quantum well (DQW) bilayer structures. Furthermore, to optimize the visibility of pairing dynamics in future studies, we present an analysis suggesting realistic experimental settings in GaAs and transition metal dichalcogenide (TMD) bilayer DQW heterostructures where collective interlayer pairing and pair superfluidity can be clearly observed.