论文标题
CG-SSD:从激光雷达点云中检测到角落的单阶段3D对象检测
CG-SSD: Corner Guided Single Stage 3D Object Detection from LiDAR Point Cloud
论文作者
论文摘要
目前,使用LIDAR点云进行3D对象检测的基于锚或锚的模型使用中心分配程序策略来推断3D边界框。但是,在现实世界中,LiDAR只能获得有限的对象表面点云,但是对象的中心点不存在。通过汇总不完整的表面点云来获得对象将导致方向和尺寸估计的准确性丧失。为了解决这个问题,我们提出了一个无角的无锚单阶段3D对象检测模型(CG-SSD)。首先,3D稀疏卷积骨干网络由残留层组成,并使用子模型稀疏卷积层用于构建鸟类视图(BEV)的特征(BEV),以进一步的更深的特征,以进一步的深层特征,lite Unite Uphate utaped Unite U型U型lite Uphate utaped Unite u e塑形;其次,提出了一个新颖的角引导辅助模块(CGAM)将角监督信号纳入神经网络。 CGAM经过明确设计和训练,以检测到部分可见和看不见的角,以获得更准确的对象特征表示,尤其是对于小或部分遮挡的物体;最后,将骨干网络和CGAM模块的深度特征连接到头部模块中,以预测场景中对象的分类和3D边界框。该实验表明,CG-SSD在曾经的基准测试上实现了最先进的性能,用于使用单帧点云数据进行监督的3D对象检测,并具有62.77%的MAP。此外,一次实验和Waymo Open数据集显示,CGAM可以扩展到大多数基于锚的模型,这些模型使用BEV功能来检测对象作为插件,并带来+1.17% - +14.27%的AP改进。
At present, the anchor-based or anchor-free models that use LiDAR point clouds for 3D object detection use the center assigner strategy to infer the 3D bounding boxes. However, in a real world scene, the LiDAR can only acquire a limited object surface point clouds, but the center point of the object does not exist. Obtaining the object by aggregating the incomplete surface point clouds will bring a loss of accuracy in direction and dimension estimation. To address this problem, we propose a corner-guided anchor-free single-stage 3D object detection model (CG-SSD ).Firstly, 3D sparse convolution backbone network composed of residual layers and sub-manifold sparse convolutional layers are used to construct bird's eye view (BEV) features for further deeper feature mining by a lite U-shaped network; Secondly, a novel corner-guided auxiliary module (CGAM) is proposed to incorporate corner supervision signals into the neural network. CGAM is explicitly designed and trained to detect partially visible and invisible corners to obtains a more accurate object feature representation, especially for small or partial occluded objects; Finally, the deep features from both the backbone networks and CGAM module are concatenated and fed into the head module to predict the classification and 3D bounding boxes of the objects in the scene. The experiments demonstrate CG-SSD achieves the state-of-art performance on the ONCE benchmark for supervised 3D object detection using single frame point cloud data, with 62.77%mAP. Additionally, the experiments on ONCE and Waymo Open Dataset show that CGAM can be extended to most anchor-based models which use the BEV feature to detect objects, as a plug-in and bring +1.17%-+14.27%AP improvement.