论文标题

自适应两指数融合属性加权幼稚贝叶斯的一般框架

A general framework for adaptive two-index fusion attribute weighted naive Bayes

论文作者

Zhou, Xiaoliang, Wu, Dongyang, You, Zitong, Zhang, Li, Ye, Ning

论文摘要

幼稚的贝叶斯(NB)是数据挖掘中的必要算法之一。但是,由于属性独立假设,它很少在现实中使用。研究人员提出了许多改进的NB方法来减轻这一假设。在这些方法中,由于效率高和易于实施,过滤属性加权NB方法受到了极大的关注。但是,仍然存在一些挑战,例如,单个索引的表示能力和两个索引的融合问题。为了克服上述挑战,我们提出了一个自适应两指数融合属性加权NB(ATFNB)的一般框架。两种类型的数据描述类别用于表示类和属性之间的相关性,分别是属性和属性之间的相互关系。 ATFNB可以从每个类别中选择任何一个索引。然后,我们将开关因子\ {beta}介绍给两个索引,该索引可以自适应地调整各种数据集上两个索引的最佳比率。并提出了一种快速算法来推断切换因子\ {beta}的最佳间隔。最后,使用最佳值\ {beta}计算每个属性的权重,并将其集成到NB分类器中以提高精度。 50个基准数据集和Flavia数据集的实验结果表明,ATFNB的表现优于基本的NB和最先进的过滤器加权NB模型。此外,ATFNB框架可以通过引入自适应开关因子\ {beta}来改善现有的两指数NB模型。辅助实验结果表明,与原始模型相比,没有自适应开关因子\ {beta}相比,改进的模型可显着提高准确性。

Naive Bayes(NB) is one of the essential algorithms in data mining. However, it is rarely used in reality because of the attribute independent assumption. Researchers have proposed many improved NB methods to alleviate this assumption. Among these methods, due to high efficiency and easy implementation, the filter attribute weighted NB methods receive great attentions. However, there still exists several challenges, such as the poor representation ability for single index and the fusion problem of two indexes. To overcome above challenges, we propose a general framework for Adaptive Two-index Fusion attribute weighted NB(ATFNB). Two types of data description category are used to represent the correlation between classes and attributes, intercorrelation between attributes and attributes, respectively. ATFNB can select any one index from each category. Then, we introduce a switching factor \{beta} to fuse two indexes, which can adaptively adjust the optimal ratio of the two index on various datasets. And a quick algorithm is proposed to infer the optimal interval of switching factor \{beta}. Finally, the weight of each attribute is calculated using the optimal value \{beta} and is integrated into NB classifier to improve the accuracy. The experimental results on 50 benchmark datasets and a Flavia dataset show that ATFNB outperforms the basic NB and state-of-the-art filter weighted NB models. In addition, the ATFNB framework can improve the existing two-index NB model by introducing the adaptive switching factor \{beta}. Auxiliary experimental results demonstrate the improved model significantly increases the accuracy compared to the original model without the adaptive switching factor \{beta}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源