论文标题
一种简单的自我监督的心电图表示方法,通过操纵的时间空间反向检测
A Simple Self-Supervised ECG Representation Learning Method via Manipulated Temporal-Spatial Reverse Detection
论文作者
论文摘要
来自心电图(ECG)信号的学习表示形式可以作为不同基于机器学习的ECG任务的基本步骤。为了提取可以适应各种下游任务的一般心电图表示,学习过程需要基于一般与ECG相关的任务,该任务可以通过自我监督的学习(SSL)来实现。但是,现有的SSL方法要么无法提供令人满意的心电图表示,要么需要太多努力来构建学习数据。在本文中,我们提出了T-S反向检测,这是一种简单而有效的自我监督的方法来学习ECG表示。受ECG信号的时间和空间特征的启发,我们水平地(时间反向),垂直(空间反向)以及水平和垂直(时间空间反向)对原始信号进行水平翻转。然后,通过对包括原始信号在内的四种类型的信号进行分类来完成学习。为了验证所提出的方法的有效性,我们执行下游任务以检测房颤(AF),这是最常见的ECG任务之一。结果表明,通过我们的方法学到的心电图表示实现了显着的性能。此外,在探索了表示空间并研究了显着的心电图位置之后,我们得出结论,时间反向比空间反向更有效地学习ECG表示。
Learning representations from electrocardiogram (ECG) signals can serve as a fundamental step for different machine learning-based ECG tasks. In order to extract general ECG representations that can be adapted to various downstream tasks, the learning process needs to be based on a general ECG-related task which can be achieved through self-supervised learning (SSL). However, existing SSL approaches either fail to provide satisfactory ECG representations or require too much effort to construct the learning data. In this paper, we propose the T-S reverse detection, a simple yet effective self-supervised approach to learn ECG representations. Inspired by the temporal and spatial characteristics of ECG signals, we flip the original signals horizontally (temporal reverse), vertically (spatial reverse), and both horizontally and vertically (temporal-spatial reverse). Learning is then done by classifying four types of signals including the original one. To verify the effectiveness of the proposed method, we perform a downstream task to detect atrial fibrillation (AF) which is one of the most common ECG tasks. The results show that the ECG representations learned with our method achieve remarkable performance. Furthermore, after exploring the representation feature space and investigating salient ECG locations, we conclude that the temporal reverse is more effective for learning ECG representations than the spatial reverse.