论文标题

一个基于残差的消息传递算法,以解决约束满意度问题

A residual-based message passing algorithm for constraint satisfaction problems

论文作者

Zhao, Chun-Yan, Fu, Yan-Rong, Zhao, Jin-Hua

论文摘要

消息传递算法(其迭代性质)捕获了复杂系统中互连变量之间的相互作用良好的相互作用,并从迭代消息的固定点中提取信息,为解决优化,推理和学习问题方面的硬计算任务提供了强大的工具包。在约束满意度问题(CSP)的背景下,当调谐控制参数(例如约束密度)时,出现了多个阈值现象,其解决方案空间中的信号基本结构过渡。对于算法设计而言,围绕这些过渡点的解决方案非常具有挑战性,在这些算法设计中,传递算法的消息传递远离融合的信息波动。在这里,我们在消息传递算法中介绍了一个基于残差的更新步骤,其中在更新过程中,在连续步骤之间有很大的优先级在之间变化很大。对于Model RB的特定示例,是具有生长域的随机CSP的典型原型,我们表明我们的算法改善了消息更新的收敛性,并提高了以低计算成本查找满意度阈值的解决方案的成功概率。我们的消息传递算法的方法对于探索其开发算法以找到地面解决方案并了解硬性优化问题解决方案空间的详细结构应该具有价值。

Message passing algorithms, whose iterative nature captures well complicated interactions among interconnected variables in complex systems and extracts information from the fixed point of iterated messages, provide a powerful toolkit in tackling hard computational tasks in optimization, inference, and learning problems. In the context of constraint satisfaction problems (CSPs), when a control parameter (such as constraint density) is tuned, multiple threshold phenomena emerge, signaling fundamental structural transitions in their solution space. Finding solutions around these transition points is exceedingly challenging for algorithm design, where message passing algorithms suffer from a large message fluctuation far from convergence. Here we introduce a residual-based updating step into message passing algorithms, in which messages varying large between consecutive steps are given high priority in the updating process. For the specific example of model RB, a typical prototype of random CSPs with growing domains, we show that our algorithm improves the convergence of message updating and increases the success probability in finding solutions around the satisfiability threshold with a low computational cost. Our approach to message passing algorithms should be of value for exploring their power in developing algorithms to find ground-state solutions and understand the detailed structure of solution space of hard optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源