论文标题
MAMDR:一种用于多域推荐的不可知论学习方法
MAMDR: A Model Agnostic Learning Method for Multi-Domain Recommendation
论文作者
论文摘要
现实世界中的大规模电子商务平台通常包含各种建议方案(域),以满足不同客户群的需求。旨在共同改善所有领域的建议并轻松地扩展到数千个领域的多域建议(MDR),引起了从业人员和研究人员的越来越多的关注。现有的MDR方法通常采用共享结构和几个特定组件来分别利用可重复使用的功能和特定于域的信息。但是,数据分布在各个领域之间有所不同,因此开发可应用于所有情况的通用模型的挑战。此外,在培训期间,共享参数通常会遭受域冲突的困扰,而特定参数则倾向于过度拟合数据稀疏域。我们首先提出了在淘宝提供的可扩展MDR平台,该平台使得无需参与的专家就可以为数千个领域提供服务。为了解决MDR方法的问题,我们提出了一个新型的模型不可知学习框架,即MAMDR,以进行多域建议。具体而言,我们首先提出了一个领域谈判(DN)策略来减轻领域之间的冲突。然后,我们开发一个域正则化(DR),以通过从其他域学习来提高特定参数的普遍性。我们将这些组件集成到统一的框架中,并呈现MAMDR,可以将其应用于任何模型结构以执行多域建议。最后,我们提出了TAOBAO应用程序中MAMDR的大规模实施,并构建了可用于以下研究的各种公共MDR基准数据集。基准数据集和行业数据集的广泛实验证明了MAMDR的有效性和概括性。
Large-scale e-commercial platforms in the real-world usually contain various recommendation scenarios (domains) to meet demands of diverse customer groups. Multi-Domain Recommendation (MDR), which aims to jointly improve recommendations on all domains and easily scales to thousands of domains, has attracted increasing attention from practitioners and researchers. Existing MDR methods usually employ a shared structure and several specific components to respectively leverage reusable features and domain-specific information. However, data distribution differs across domains, making it challenging to develop a general model that can be applied to all circumstances. Additionally, during training, shared parameters often suffer from the domain conflict while specific parameters are inclined to overfitting on data sparsity domains. we first present a scalable MDR platform served in Taobao that enables to provide services for thousands of domains without specialists involved. To address the problems of MDR methods, we propose a novel model agnostic learning framework, namely MAMDR, for the multi-domain recommendation. Specifically, we first propose a Domain Negotiation (DN) strategy to alleviate the conflict between domains. Then, we develop a Domain Regularization (DR) to improve the generalizability of specific parameters by learning from other domains. We integrate these components into a unified framework and present MAMDR, which can be applied to any model structure to perform multi-domain recommendation. Finally, we present a large-scale implementation of MAMDR in the Taobao application and construct various public MDR benchmark datasets which can be used for following studies. Extensive experiments on both benchmark datasets and industry datasets demonstrate the effectiveness and generalizability of MAMDR.