论文标题

适当的k混合薄图的双宽度和转导

Twin-width and Transductions of Proper k-Mixed-Thin Graphs

论文作者

Balabán, Jakub, Hliněný, Petr, Jedelský, Jan

论文摘要

由Bonnet,Kim,Thomass E和Watrigant在2020年推出的新图形参数双宽度允许使用FPT算法来测试图形的所有FO属性。从算法的角度来看,这使得有效界限的双宽度有吸引力。特别是,有效界限的双宽度的类别包括适当的间隔图,以及(作为Digraphs)宽度k的posets。受到间隔图的现有概括为所谓的k-thin图的启发,我们定义了一类新的合适的k混合图形图,该图在很大程度上概括了适当的间隔图。我们证明,合适的k混合图在k中具有双宽线性,并且k混合薄的图的轻微子类与宽度k'的poset相等,因此k和k之间存在二次聚集关系。除此之外,我们还提供了所谓的红色潜在方法的抽象概述,我们用来证明我们的双宽度界限。

The new graph parameter twin-width, introduced by Bonnet, Kim, Thomass e and Watrigant in 2020, allows for an FPT algorithm for testing all FO properties of graphs. This makes classes of efficiently bounded twin-width attractive from the algorithmic point of view. In particular, classes of efficiently bounded twin-width include proper interval graphs, and (as digraphs) posets of width k. Inspired by an existing generalization of interval graphs into so-called k-thin graphs, we define a new class of proper k-mixed-thin graphs which largely generalizes proper interval graphs. We prove that proper k-mixed-thin graphs have twin-width linear in k, and that a slight subclass of k-mixed-thin graphs is transduction-equivalent to posets of width k' such that there is a quadratic-polynomial relation between k and k'. In addition to that, we also give an abstract overview of the so-called red potential method which we use to prove our twin-width bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源