论文标题

使用多模式数据的头颈部肿瘤预后的合奏方法

An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using Multimodal Data

论文作者

Saeed, Numan, Majzoub, Roba Al, Sobirov, Ikboljon, Yaqub, Mohammad

论文摘要

肿瘤的准确预后可以帮助医生提供适当的治疗过程,因此挽救了许多人的生命。在过去的几十年中,传统的机器学习算法在制定预后模型方面非常有用。最近,深度学习算法在为不同的医疗保健问题开发诊断和预后解决方案时已显示出显着改善。但是,这些解决方案中的大多数仅依赖于成像或临床数据。利用患者的表格数据,例如人口统计学和患者病史,以及以多模式方法解决预后任务的成像数据,最近开始引起更多的兴趣,并有可能创建更准确的解决方案。使用临床和成像数据训练深度学习模型的主要问题是决定如何将这些信息从这些来源结合起来。我们提出了一个多模式网络,该网络将使用患者的临床和成像(CT和PET)数据组合深层多任务逻辑回归(MTLR),COX比例危害(COXPH)和CNN模型来预测头颈肿瘤患者的预后结局。 CT和PET扫描的功能融合在一起,然后与患者的电子健康记录相结合以进行预测。提出的模型分别在224和101患者记录上进行了训练和测试。实验结果表明,我们提出的集合解决方案在Hecktor测试集上达到了0.72的C索引,从而为我们节省了Hecktor挑战预后任务的第一名。基于Pytorch的完整实现可在\ url {https://github.com/numanai/biomedia-hecktor2021}上获得。

Accurate prognosis of a tumor can help doctors provide a proper course of treatment and, therefore, save the lives of many. Traditional machine learning algorithms have been eminently useful in crafting prognostic models in the last few decades. Recently, deep learning algorithms have shown significant improvement when developing diagnosis and prognosis solutions to different healthcare problems. However, most of these solutions rely solely on either imaging or clinical data. Utilizing patient tabular data such as demographics and patient medical history alongside imaging data in a multimodal approach to solve a prognosis task has started to gain more interest recently and has the potential to create more accurate solutions. The main issue when using clinical and imaging data to train a deep learning model is to decide on how to combine the information from these sources. We propose a multimodal network that ensembles deep multi-task logistic regression (MTLR), Cox proportional hazard (CoxPH) and CNN models to predict prognostic outcomes for patients with head and neck tumors using patients' clinical and imaging (CT and PET) data. Features from CT and PET scans are fused and then combined with patients' electronic health records for the prediction. The proposed model is trained and tested on 224 and 101 patient records respectively. Experimental results show that our proposed ensemble solution achieves a C-index of 0.72 on The HECKTOR test set that saved us the first place in prognosis task of the HECKTOR challenge. The full implementation based on PyTorch is available on \url{https://github.com/numanai/BioMedIA-Hecktor2021}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源