论文标题

机器人操纵的可见性最大化控制器

Visibility Maximization Controller for Robotic Manipulation

论文作者

He, Kerry, Newbury, Rhys, Tran, Tin, Haviland, Jesse, Burgess-Limerick, Ben, Kulić, Dana, Corke, Peter, Cosgun, Akansel

论文摘要

由机器人自己的身体引起的遮挡是在摄像头设置中采用的闭环控制方法的常见问题。我们提出了一个基于优化的反应性控制器,该控制器可以最大程度地降低自我十分,同时实现所需的目标姿势。该方法通过编码对目标的视线可见性作为软约束以及其他与任务相关的约束,并解决可行的关节和基本速度,可以在机器人的底座,手臂和头部之间进行协调控制。该方法的普遍性在模拟和现实世界实验,具有固定或移动底座的机器人,带有移动或固定对象以及多个对象的机器人上证明了。实验表明,遮挡率与其他任务指标之间的权衡。虽然基于计划的基线的闭塞率比拟议的控制器低,但它以高效的路径为代价,而任务成功率显着下降。另一方面,提出的控制器被证明可以提高对线目标对象的可见性,而不会因任务成功和效率而牺牲过多。视频和代码可以在以下网址找到:rhys-newbury.github.io/projects/vmc/。

Occlusions caused by a robot's own body is a common problem for closed-loop control methods employed in eye-to-hand camera setups. We propose an optimization-based reactive controller that minimizes self-occlusions while achieving a desired goal pose. The approach allows coordinated control between the robot's base, arm and head by encoding the line-of-sight visibility to the target as a soft constraint along with other task-related constraints, and solving for feasible joint and base velocities. The generalizability of the approach is demonstrated in simulated and real-world experiments, on robots with fixed or mobile bases, with moving or fixed objects, and multiple objects. The experiments revealed a trade-off between occlusion rates and other task metrics. While a planning-based baseline achieved lower occlusion rates than the proposed controller, it came at the expense of highly inefficient paths and a significant drop in the task success. On the other hand, the proposed controller is shown to improve visibility to the line target object(s) without sacrificing too much from the task success and efficiency. Videos and code can be found at: rhys-newbury.github.io/projects/vmc/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源