论文标题

基于VPL的渲染中的轻型传输的稀疏采样和完成

Sparse Sampling and Completion for Light Transport in VPL-based Rendering

论文作者

Huo, Yuchi, Wang, Rui, Liu, Xinguo, Bao, Hujun

论文摘要

多光配方为使用数十万个虚拟点灯(VPL)提供了各种照明效果提供了一个通用框架。为了有效地收集VPLS的贡献,LightCuts及其扩展集群群集VPL,该VPLS隐式近似于照明矩阵,其中一些代表性块类似于向量量化。在本文中,我们提出了一种基于先前的灯键方法和低秩矩阵分解模型的新近似方法。正如许多研究人员指出的那样,照明矩阵的排名很低,这意味着它可以从一小部分已知条目中完成。 我们首先生成一个保守的全球灯切割,并通过使用Lightslice的方法将照明矩阵通过表面点的坐标和正常方式划分为切片。然后,我们对每个矩阵切片进行两次随机采样。在第一个通过中,对均匀分布的随机条目进行采样以使全局灯切割,进一步聚集了切片的空间局部表面点的相似光。在第二次通过中,根据第一个采样结果估计的可能性分布函数对更多条目进行采样。然后将每个矩阵切片分解为两个由采样条目约束的两个较小较小级矩阵的产物,该矩阵的完成,该矩阵完成了照明矩阵的完成。分解形式为添加矩阵列提供了额外的加速,该矩阵列更友好。与以前的基于灯键的方法相比,我们通过分解与某些信号专用碱基近似照明矩阵。实验结果表明,我们可以实现明显的加速度,而不是最明亮的方法。

The many-light formulation provides a general framework for rendering various illumination effects using hundreds of thousands of virtual point lights (VPLs). To efficiently gather the contributions of the VPLs, lightcuts and its extensions cluster the VPLs, which implicitly approximates the lighting matrix with some representative blocks similar to vector quantization. In this paper, we propose a new approximation method based on the previous lightcut method and a low-rank matrix factorization model. As many researchers pointed out, the lighting matrix is low rank, which implies that it can be completed from a small set of known entries. We first generate a conservative global light cut with bounded error and partition the lighting matrix into slices by the coordinate and normal of the surface points using the method of lightslice. Then we perform two passes of randomly sampling on each matrix slice. In the first pass, uniformly distributed random entries are sampled to coarsen the global light cut, further clustering the similar light for the spatially localized surface points of the slices. In the second pass, more entries are sampled according to the possibility distribution function estimated from the first sampling result. Then each matrix slice is factorized into a product of two smaller low-rank matrices constrained by the sampled entries, which delivers a completion of the lighting matrix. The factorized form provides an additional speedup for adding up the matrix columns which is more GPU friendly. Compared with the previous lightcut based methods, we approximate the lighting matrix with some signal specialized bases via factorization. The experimental results shows that we can achieve significant acceleration than the state of the art many-light methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源