论文标题
在飞机上硬球中的十二杆和八角形准晶体的自组装
Self-assembly of dodecagonal and octagonal quasicrystals in hard spheres on a plane
论文作者
论文摘要
准晶体是引人入胜的结构,其特征是较强的位置顺序,但缺乏晶体的周期性。在胶体系统中,通常预测具有复杂或高度特异性相互作用的粒子,这使得实验实现困难。在这里,我们提出了一个用于准晶体形成的理想胶体模型系统:硬球的二进制混合物沉积在平坦的基板上。使用计算机模拟,我们探索了这些系统的封闭式和自发的自组装,并在较大的尺寸比率和组合物中探索。令人惊讶的是,我们发现这种简单的,有效的二维模型系统不仅形成了各种晶体相,而且形成了两个准晶相:一个十二架和一个八角形。有趣的是,八角形准晶体由三个不同的图块组成,它们的相对浓度可以通过二元混合物的组成来连续调节。这两个阶段在参数空间的很大一部分上形成可靠,迅速地形成,使平面上的硬球成为理想的模型系统,用于探索胶体尺度上的准晶体自组装。
Quasicrystals are fascinating structures, characterized by strong positional order but lacking the periodicity of a crystal. In colloidal systems, quasicrystals are typically predicted for particles with complex or highly specific interactions, which makes experimental realization difficult. Here, we propose an ideal colloidal model system for quasicrystal formation: binary mixtures of hard spheres sedimented onto a flat substrate. Using computer simulations, we explore both the close-packing and spontaneous self-assembly of these systems over a wide range of size ratios and compositions. Surprisingly, we find that this simple, effectively two-dimensional model systems forms not only a variety of crystal phases, but also two quasicrystal phases: one dodecagonal and one octagonal. Intriguingly, the octagonal quasicrystal consists of three different tiles, whose relative concentrations can be continuously tuned via the composition of the binary mixture. Both phases form reliably and rapidly over a significant part of parameter space, making hard spheres on a plane an ideal model system for exploring quasicrystal self-assembly on the colloidal scale.