论文标题

用于多代理控制和采样的应用程序不均匀扩散的BLOB方法

A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling

论文作者

Craig, Katy, Elamvazhuthi, Karthik, Haberland, Matt, Turanova, Olga

论文摘要

作为对线性扩散方程的经典随机粒子方法的对立,我们为加权多孔培养基方程(WPME)开发了确定性的粒子方法,并证明了其在有限的时间间隔上的收敛性。这概括了针对未加权多孔介质方程的BLOB方法的相关工作。从数值分析的角度来看,我们的方法具有多个优点:它是无误的,保留了基础PDE的梯度流结构,在任意维度上收敛,并捕获了模拟中正确的渐近行为。 从量化中相关问题的角度来看,我们的方法成功地捕获了WPME的长时间行为是重要的。正如Fokker-Planck方程提供了一种方法,可以通过根据随机Langevin动力学发展经验度量来量化概率度量$ \barρ$,从而使经验度量流向$ \barρ$,我们的粒子方法也可以根据确定性的粒子动力学近似wmpe量化$ \barρ$。这样,我们的方法在多代理覆盖算法和采样概率指标上具有自然应用。 我们方法的特定情况与训练径向基函数激活函数的两层神经网络的限制平均场动力学完全相对应。从这个角度来看,我们的收敛结果表明,在过度兼容的制度中,随着径向基函数的方差为零,连续限制由WPME给出。这概括了先前的结果,这些结果考虑了统一数据分布的情况,即更一般的不均匀环境。由于我们的收敛结果,我们确定了目标函数和数据分布的条件,该条件在连续限制中出现了能量景观的凸度。

As a counterpoint to classical stochastic particle methods for linear diffusion equations, we develop a deterministic particle method for the weighted porous medium equation (WPME) and prove its convergence on bounded time intervals. This generalizes related work on blob methods for unweighted porous medium equations. From a numerical analysis perspective, our method has several advantages: it is meshfree, preserves the gradient flow structure of the underlying PDE, converges in arbitrary dimension, and captures the correct asymptotic behavior in simulations. That our method succeeds in capturing the long time behavior of WPME is significant from the perspective of related problems in quantization. Just as the Fokker-Planck equation provides a way to quantize a probability measure $\barρ$ by evolving an empirical measure according to stochastic Langevin dynamics so that the empirical measure flows toward $\barρ$, our particle method provides a way to quantize $\barρ$ according to deterministic particle dynamics approximating WMPE. In this way, our method has natural applications to multi-agent coverage algorithms and sampling probability measures. A specific case of our method corresponds exactly to confined mean-field dynamics of training a two-layer neural network for a radial basis function activation function. From this perspective, our convergence result shows that, in the overparametrized regime and as the variance of the radial basis functions goes to zero, the continuum limit is given by WPME. This generalizes previous results, which considered the case of a uniform data distribution, to the more general inhomogeneous setting. As a consequence of our convergence result, we identify conditions on the target function and data distribution for which convexity of the energy landscape emerges in the continuum limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源