论文标题

Python的智能城市:大型矢量数据的静态和交互式可视化的Python库的比较

Python for Smarter Cities: Comparison of Python libraries for static and interactive visualisations of large vector data

论文作者

Herda, Gregor, McNabb, Robert

论文摘要

作为“智能城市”计划并促进互操作性的一部分,地方政府越来越多地将开源软件纳入其数据管理,分析和可视化工作流程中。 Python凭借其简洁而自然的语法,为没有计算机科学背景的市政人员提供了低障碍。但是,特别是关于地理空间的可视化,可用的Python库范围已经多样化,以至于确定特定用例的候选库是一项艰巨的任务。因此,这项研究评估了Python生态系统中突出的,积极开发的可视化库,这些库在适合生产大型矢量数据集的可视化的情况下。城市发展中常见的一个简单可视化任务用于在静态和互动的“轨道”中生成几乎相同的主题图。所有入围名单的库都能够生成一个小型和较大数据集的样本地图产品。对于交互式可视化,代码复杂性更大。强调正式和非正式的文档渠道,以概述可用资源以使学习曲线变平。这两种曲目的CPU跑步时间在过程链的基于Python的一部分都差异很大,指出了进一步研究的途径。这些结果表明,Python生态系统为地方政府提供了强大的工具,没有供应商锁定和许可费,以生产出内部和公共分销的性能且始终格式化的可视化。

Local governments, as part of 'smart city' initiatives and to promote interoperability, are increasingly incorporating open-source software into their data management, analysis, and visualisation workflows. Python, with its concise and natural syntax, presents a low barrier to entry for municipal staff without computer science backgrounds. However, with regard to geospatial visualisations in particular, the range of available Python libraries has diversified to such an extent that identifying candidate libraries for specific use cases is a challenging undertaking. This study therefore assesses prominent, actively-developed visualisation libraries in the Python ecosystem with respect to their suitability for producing visualisations of large vector datasets. A simple visualisation task common in urban development is used to produce near-identical thematic maps across static and an interactive 'tracks' of comparison. All short-listed libraries were able to generate the sample map products for both a small and larger dataset. Code complexity differed more strongly for interactive visualisations. Formal and informal documentation channels are highlighted to outline available resources for flattening learning curves. CPU runtimes for the Python-based portion of the process chain differed starkly for both tracks, pointing to avenues for further research. These results demonstrate that the Python ecosystem offers local governments powerful tools, free of vendor lock-in and licensing fees, to produce performant and consistently formatted visualisations for both internal and public distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源