论文标题

边缘增强,用于大规模素描识别,没有草图

Edge Augmentation for Large-Scale Sketch Recognition without Sketches

论文作者

Efthymiadis, Nikos, Tolias, Giorgos, Chum, Ondrej

论文摘要

这项工作解决了将草图分类任务扩展到大量类别的规模。为训练收集草图是一个缓慢而乏味的过程,到目前为止,所有尝试大规模素描识别的尝试。我们通过利用易于获取的自然图像集合来克服缺乏培训草图数据。为了弥合域间隙,我们提出了一种新颖的增强技术,该技术是根据从一系列自然图像中学习草图识别的任务量身定制的。在边缘检测和边缘选择的参数中引入了随机化。自然图像被转化为称为“随机二进制薄边缘”(RBTE)的伪新颖域,该结构域被用作训练域而不是自然图像。通过训练基于CNN的草图识别的类别数量超过2.5倍以前的素描识别,比以前使用的能力表明了扩展的能力。为此,通过组合许多流行的计算机视觉数据集来构建来自874个类别的自然图像的数据集。选择类别适合草图识别。为了估计性能,还收集了393个类别的子集。

This work addresses scaling up the sketch classification task into a large number of categories. Collecting sketches for training is a slow and tedious process that has so far precluded any attempts to large-scale sketch recognition. We overcome the lack of training sketch data by exploiting labeled collections of natural images that are easier to obtain. To bridge the domain gap we present a novel augmentation technique that is tailored to the task of learning sketch recognition from a training set of natural images. Randomization is introduced in the parameters of edge detection and edge selection. Natural images are translated to a pseudo-novel domain called "randomized Binary Thin Edges" (rBTE), which is used as a training domain instead of natural images. The ability to scale up is demonstrated by training CNN-based sketch recognition of more than 2.5 times larger number of categories than used previously. For this purpose, a dataset of natural images from 874 categories is constructed by combining a number of popular computer vision datasets. The categories are selected to be suitable for sketch recognition. To estimate the performance, a subset of 393 categories with sketches is also collected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源