论文标题
通过涡流粉状的涡旋形成对自旋极化的拓扑实现
A topological realization of spin polarization through vortex formation in collisions of Bose-Einstein condensates
论文作者
论文摘要
在重离子碰撞中,hadron的全球自旋极化已经在恒星(相对论重离子对撞机的螺线管跟踪器)实验中进行了测量,该实验在研究实验室中产生的最热,最不粘性和最耐粘性和最涡流的流体的研究中打开了一个新窗口。我们提出了一种与常规偏振的不同方法:在玻色仁冷凝水(BEC)碰撞中,通过量子涡流形成对自旋极化的拓扑实现。这种方法基于这样的观察,即在存在局部轨道角动量的情况下,涡流是超流体中的拓扑激发,并且是自由度自由度的类似物。通过求解图形处理单元(GPU)的大规模平行算法(GPU)以非常高的精度,研究了涡流和涡流 - 抗体对的形成过程。在旋转环境中,具有绕组第一的主要涡流对扰动是稳定的,它具有最小的能量和固定的轨道角动量(OAM),但是具有较大绕组数的涡流是不稳定的,并且会通过重新分配能量和涡流而衰减到主要涡流中。注射OAM也可以在自相互作用冷凝物的非中心碰撞中实现,初始状态的一部分将通过拓扑缺陷周围的能量和涡度密度诱导涡流的形成。与流体动力学描述不同,波功能的干扰在能量和涡旋的运输中起着重要作用,反映了涡流形成过程的量子性质。对涡旋形成的研究可能会阐明在重离子碰撞中产生的强相互作用物质中粒子自旋和自旋轨道耦合的性质。
The global spin polarization of hadrons in heavy ion collisions has been measured in STAR (the Solenoidal Tracker At Relativistic heavy ion collider) experiments, which opens up a new window in the study of the hottest, least viscous and most vortical fluid that has ever been produced in the laboratory. We present a different approach to spin polarization from conventional ones: a topological realization of spin polarization through quantum vortex formation in collisions of Bose-Einstein condensates (BEC). This approach is based on the observation that the vortex is a topological excitation in a superfluid in presence of local orbital angular momentum and is an analogue of spin degrees of freedom. The formation processes of vortices and vortex-antivortex pairs are investigated by solving the Gross-Pitaevskii Equation with a large-scale parallel algorithm on Graphics Processing Unit (GPU) to very high precision. In a rotating environment, the primary vortex with winding number one is stable against perturbation, which has a minimal energy and fixed orbital angular momentum (OAM), but the vortices with larger winding numbers are unstable and will decay into primary vortices through a redistribution of the energy and vorticity. The injection of OAM can also be realized in non-central collisions of self-interacting condensates, part of the OAM of the initial state will induce the formation of vortices through concentration of energy and vorticity density around topological defects. Different from a hydrodynamical description, the interference of the wave function plays an important role in the transport of energy and vorticity, reflecting the quantum nature of the vortex formation process. The study of the vortex formation may shed light on the nature of particle spin and spin-orbit couplings in strong interaction matter produced in heavy-ion collisions.