论文标题

激进的赛车使用板上摄像头和惯性测量单元漂移控制

Aggressive Racecar Drifting Control Using Onboard Cameras and Inertial Measurement Unit

论文作者

Lin, Shuaibing, Qu, JiaLiang, Li, Zishuo, Ren, Xiaoqiang, Mo, Yilin

论文摘要

复杂的自主驾驶(例如漂移)需要高精度和高频姿势信息,以确保准确性和安全性,这在仅使用板载传感器时非常困难。在本文中,我们提出了一个带有两个反馈控制回路的漂移控制器:侧滑控制器,通过调谐前轮转向角度稳定侧滑角度,以及通过控制轮旋转速度来维护稳定的轨迹半径和圆圈中心的圆形控制器。我们使用扩展的卡尔曼过滤器来估计状态。进一步提出了一种可靠的KASA算法,以准确估算最适合当前轨迹的圆(即中心和半径)的参数(即中心和半径)。在稳定漂移过程中车辆均匀圆形运动的前提下,我们使用角度信息而不是加速度来描述车辆的动态。我们在1/10比例赛车上实施方法。汽车在给定的中心和半径上稳定漂移,这说明了我们方法的有效性。

Complex autonomous driving, such as drifting, requires high-precision and high-frequency pose information to ensure accuracy and safety, which is notably difficult when using only onboard sensors. In this paper, we propose a drift controller with two feedback control loops: sideslip controller that stabilizes the sideslip angle by tuning the front wheel steering angle, and circle controller that maintains a stable trajectory radius and circle center by controlling the wheel rotational speed. We use an extended Kalman filter to estimate the state. A robustified KASA algorithm is further proposed to accurately estimate the parameters of the circle (i.e., the center and radius) that best fits into the current trajectory. On the premise of the uniform circular motion of the vehicle in the process of stable drift, we use angle information instead of acceleration to describe the dynamic of the vehicle. We implement our method on a 1/10 scale race car. The car drifts stably with a given center and radius, which illustrates the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源