论文标题

通过距离协方差降低功能足够的尺寸

Functional sufficient dimension reduction through distance covariance

论文作者

Yang, Xing, Xu, Jianjun

论文摘要

我们的研究提出了一种新的方法来降低功能数据的维度,特别是对于响应是标量而预测变量是随机函数的情况。我们的方法利用距离协方差,并且比现有方法具有多个优势。与需要限制性假设(例如线性条件均值和恒定协方差)的当前技术不同,我们的方法对预测指标有轻微的要求。此外,我们的方法不涉及使用协方差运算符的无限倒数的使用。响应和预测变量之间的链接函数可以是任意的,我们提出的方法保持了无模型的优势,而无需估计链接函数。此外,我们的方法自然适合稀疏纵向数据。我们利用具有截断的功能主成分分析作为我们方法开发的正规化机制。我们为我们提出的方法的有效性提供了理由,并在某些正规化条件下建立了估计量的统计一致性。为了证明我们提出的方法的有效性,我们进行了模拟研究和实际数据分析。结果表明,与现有方法相比,性能的提高。

Our research proposes a novel method for reducing the dimensionality of functional data, specifically for the case where the response is a scalar and the predictor is a random function. Our method utilizes distance covariance, and has several advantages over existing methods. Unlike current techniques which require restrictive assumptions such as linear conditional mean and constant covariance, our method has mild requirements on the predictor. Additionally, our method does not involve the use of the unbounded inverse of the covariance operator. The link function between the response and predictor can be arbitrary, and our proposed method maintains the advantage of being model-free, without the need to estimate the link function. Furthermore, our method is naturally suited for sparse longitudinal data. We utilize functional principal component analysis with truncation as a regularization mechanism in the development of our method. We provide justification for the validity of our proposed method, and establish statistical consistency of the estimator under certain regularization conditions. To demonstrate the effectiveness of our proposed method, we conduct simulation studies and real data analysis. The results show improved performance compared to existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源